初中数学

如图1, ΔABC 是等腰直角三角形, BAC = 90 ° AB = AC ,四边形 ADEF 是正方形,点 B C 分别在边 AD AF 上,此时 BD = CF BD CF 成立.

(1)当 ΔABC 绕点 A 逆时针旋转 θ ( 0 ° < θ < 90 ° ) 时,如图2, BD = CF 成立吗?若成立,请证明,若不成立,请说明理由;

(2)当 ΔABC 绕点 A 逆时针旋转 45 ° 时,如图3,延长 BD CF 于点 H

①求证: BD CF

②当 AB = 2 AD = 3 2 时,求线段 DH 的长.

来源:2016年山东省东营市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

对于平面图形上的任意两点 P Q ,如果经过某种变换得到新图形上的对应点 P ' Q ' ,保持 PQ = P ' Q ' ,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是 (    )

A.平移B.旋转C.轴对称D.位似

来源:2016年山东省德州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

已知: ΔABC ΔADE 均为等边三角形,连接 BE CD ,点 F G H 分别为 DE BE CD 中点.

(1)当 ΔADE 绕点 A 旋转时,如图1,则 ΔFGH 的形状为  ,说明理由;

(2)在 ΔADE 旋转的过程中,当 B D E 三点共线时,如图2,若 AB = 3 AD = 2 ,求线段 FH 的长;

(3)在 ΔADE 旋转的过程中,若 AB = a AD = b ( a > b > 0 ) ,则 ΔFGH 的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.

来源:2017年辽宁省锦州市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,将矩形 ABCD 绕点 A 旋转至矩形 AEFG 的位置,此时点 D 恰好与 AF 的中点重合, AE CD 于点 H ,若 BC = 2 3 ,则 HC 的长为 (    )

A.4B. 2 3 C. 3 3 D.6

来源:2017年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,四边形 ABCD 的对角线 AC BD 相交于点 O OB = OD OC = OA + AB AD = m BC = n ABD + ADB = ACB

(1)填空: BAD ACB 的数量关系为  BAD + ACB = 180 °  

(2)求 m n 的值;

(3)将 ΔACD 沿 CD 翻折,得到△ A ' CD (如图 2 ) ,连接 BA ' ,与 CD 相交于点 P .若 CD = 5 + 1 2 ,求 PC 的长.

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, C = 90 ° AC = 3 BC = 4 ,点 D E 分别在 AC BC 上(点 D 与点 A C 不重合),且 DEC = A ,将 ΔDCE 绕点 D 逆时针旋转 90 ° 得到△ DC ' E ' .当△ DC ' E ' 的斜边、直角边与 AB 分别相交于点 P Q (点 P 与点 Q 不重合)时,设 CD = x PQ = y

(1)求证: ADP = DEC

(2)求 y 关于 x 的函数解析式,并直接写出自变量 x 的取值范围.

来源:2017年辽宁省大连市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中, O 为对角线交点,将扇形 AOD 绕点 O 顺时针旋转一定角度得到扇形 EOF ,则在旋转过程中图中阴影部分的面积 (    )

A.不变B.由大变小

C.由小变大D.先由小变大,后由大变小

来源:2017年辽宁省朝阳市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° AC = 4 BC = 3 ,将 ΔABC 绕点 A 顺时针旋转得到 ΔADE (其中点 B 恰好落在 AC 延长线上点 D 处,点 C 落在点 E 处),连接 BD ,则四边形 AEDB 的面积为  

来源:2017年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图1,在 Rt Δ ABC 中, ACB = 90 ° B = 30 ° ,点 M AB 的中点,连接 MC ,点 P 是线段 BC 延长线上一点,且 PC < BC ,连接 MP AC 于点 H .将射线 MP 绕点 M 逆时针旋转 60 ° 交线段 CA 的延长线于点 D

(1)找出与 AMP 相等的角,并说明理由.

(2)如图2, CP = 1 2 BC ,求 AD BC 的值.

(3)在(2)的条件下,若 MD = 13 3 ,求线段 AB 的长.

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等边三角形,点 D BC 边上一点, BD = 1 2 DC = 2 ,以点 D 为顶点作正方形 DEFG ,且 DE = BC ,连接 AE AG .若将正方形 DEFG 绕点 D 旋转一周,当 AE 取最小值时, AG 的长为  

来源:2019年辽宁省营口市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ABC = 90 ° ACB = 30 ° ,将 ΔABC 绕点 C 顺时针旋转一定的角度 α 得到 ΔDEC ,点 A B 的对应点分别是 D E

(1)当点 E 恰好在 AC 上时,如图1,求 ADE 的大小;

(2)若 α = 60 ° 时,点 F 是边 AC 中点,如图2,求证:四边形 BEDF 是平行四边形.

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

Rt Δ ABC 中, ABC = 90 ° ACB = 30 ° ,将 ΔABC 绕点 C 顺时针旋转一定的角度 α 得到 ΔDEC ,点 A B 的对应点分别是 D E

(1)当点 E 恰好在 AC 上时,如图1,求 ADE 的大小;

(2)若 α = 60 ° 时,点 F 是边 AC 中点,如图2,求证:四边形 BEDF 是平行四边形.

来源:2019年福建省中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB = 10 AC = 8 .线段 AD 由线段 AB 绕点 A 按逆时针方向旋转 90 ° 得到, ΔEFG ΔABC 沿 CB 方向平移得到,且直线 EF 过点 D

(1)求 BDF 的大小;

(2)求 CG 的长.

来源:2018年福建省中考数学试卷(B卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 ° AB = 10 AC = 8 .线段 AD 由线段 AB 绕点 A 按逆时针方向旋转 90 ° 得到, ΔEFG ΔABC 沿 CB 方向平移得到,且直线 EF 过点 D

(1)求 BDF 的大小;

(2)求 CG 的长.

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = 6 DE / / AC ,将 ΔBDE 绕点 B 顺时针旋转得到△ BD ' E ' ,点 D 的对应点 D ' 落在边 BC 上.已知 BE ' = 5 D ' C = 4 ,则 BC 的长为        

来源:2017年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学旋转的性质试题