在 Rt Δ ABC 中, ∠ ABC = 90 ° , ∠ ACB = 30 ° ,将 ΔABC 绕点 C 顺时针旋转一定的角度 α 得到 ΔDEC ,点 A 、 B 的对应点分别是 D 、 E .
(1)当点 E 恰好在 AC 上时,如图1,求 ∠ ADE 的大小;
(2)若 α = 60 ° 时,点 F 是边 AC 中点,如图2,求证:四边形 BEDF 是平行四边形.
(南宁)计算:.
(来宾)(1)计算:;(2)先化简,再求值:,其中.
如图,抛物线与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题. (1)填空:点C的坐标为( ,),点D的坐标为( ,); (2)设点P的坐标为(a,0),当最大时,求a的值并在图中标出点P的位置; (3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?
在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
阅读理解抛物线y=x2上任意一点到点(0,1)的距离与到直线y=﹣1的距离相等,你可以利用这一性质解决问题.问题解决如图,在平面直角坐标系中,直线y=kx+1与y轴交于C点,与函数y=x2的图象交于A,B两点,分别过A,B两点作直线y=﹣1的垂线,交于E,F两点.(1)写出点C的坐标,并说明∠ECF=90°;(2)在△PEF中,M为EF中点,P为动点.①求证:PE2+PF2=2(PM2+EM2);②已知PE=PF=3,以EF为一条对角线作平行四边形CEDF,若1<PD<2,试求CP的取值范围.