如图,在 中, .线段 是由线段 平移得到的,点 在边 上, 是以 为斜边的等腰直角三角形,且点 恰好在 的延长线上.
(1)求证: ;
(2)求证: .
在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 和 拼在一起,使点 与点 重合,点 与点 重合(如图 ,其中 , , ,并进行如下研究活动.
活动一:将图1中的纸片 沿 方向平移,连结 , (如图 ,当点 与点 重合时停止平移.
[思考]图2中的四边形 是平行四边形吗?请说明理由.
[发现]当纸片 平移到某一位置时,小兵发现四边形 为矩形(如图 .求 的长.
活动二:在图3中,取 的中点 ,再将纸片 绕点 顺时针方向旋转 度 ,连结 , (如图 .
[探究]当 平分 时,探究 与 的数量关系,并说明理由.
在 中, , 交 的延长线于点 .
特例感知:
(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 ,一条直角边与 重合,另一条直角边恰好经过点 .通过观察、测量 与 的长度,得到 .请给予证明.
猜想论证:
(2)当三角尺沿 方向移动到图2所示的位置时,一条直角边仍与 边重合,另一条直角边交 于点 ,过点 作 垂足为 .此时请你通过观察、测量 、 与 的长度,猜想并写出 、 与 之间存在的数量关系,并证明你的猜想.
联系拓展:
(3)当三角尺在图2的基础上沿 方向继续移动到图3所示的位置(点 在线段 上,且点 与点 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)
如图,在平面直角坐标系中,一次函数 的图象与 轴和 轴分别相交于 、 两点.动点 从点 出发,在线段 上以每秒3个单位长度的速度向点 作匀速运动,到达点 停止运动,点 关于点 的对称点为点 ,以线段 为边向上作正方形 .设运动时间为 秒.
(1)当 秒时,点 的坐标是 ;
(2)在运动过程中,设正方形 与 重叠部分的面积为 ,求 与 的函数表达式;
(3)若正方形 对角线的交点为 ,请直接写出在运动过程中 的最小值.
对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 的斜平移,如点 经1次斜平移后的点的坐标为 ,已知点 的坐标为 .
(1)分别写出点 经1次,2次斜平移后得到的点的坐标.
(2)如图,点 是直线 上的一点,点 关于点 的对称点为点 ,点 关于直线 的对称点为点 .
①若 、 、 三点不在同一条直线上,判断 是否是直角三角形?请说明理由.
②若点 由点 经 次斜平移后得到,且点 的坐标为 ,求出点 的坐标及 的值.
如图1,在 中, 于点 , 的垂直平分线交 于点 ,交 于点 , , , .
(1)如图2,作 于点 ,交 于点 ,将 沿 方向平移,得到△ ,连接 .
①求四边形 的面积;
②直线 上有一动点 ,求 周长的最小值.
(2)如图3,延长 交 于点 ,过点 作 ,过 边上的动点 作 ,并与 交于点 ,将 沿直线 翻折,使点 的对应点 恰好落在直线 上,求线段 的长.
如图,在 中, .将 沿着 方向平移得到 ,其中点 在边 上, 与 相交于点 .
(1)求证: 为等腰三角形;
(2)连接 、 、 ,当点 在什么位置时,四边形 为矩形,并说明理由.
边长为6的等边 中,点 、 分别在 、 边上, , .
(1)如图1,将 沿射线 方向平移,得到△ ,边 与 的交点为 ,边 与 的角平分线交于点 ,当 多大时,四边形 为菱形?并说明理由.
(2)如图2,将 绕点 旋转 ,得到△ ,连接 、 .边 的中点为 .
①在旋转过程中, 和 有怎样的数量关系?并说明理由;
②连接 ,当 最大时,求 的值.(结果保留根号)
已知: 和矩形 如图①摆放(点 与点 重合),点 , , 在同一直线上, , , .如图②, 从图①的位置出发,沿 方向匀速运动,速度为 , 与 交于点 ;同时,点 从点 出发,沿 方向匀速运动,速度为 .过点 作 ,垂足为 ,交 于点 ,连接 , ,当点 停止运动时, 也停止运动.设运动时间为 ,解答下列问题:
(1)当 为何值时, ?
(2)设五边形 的面积为 ,求 与 之间的函数关系式;
(3)在运动过程中,是否存在某一时刻 ,使 ?若存在,求出 的值;若不存在,请说明理由.
(4)在运动过程中,是否存在某一时刻 ,使点 在线段 的垂直平分线上?若存在,求出 的值;若不存在,请说明理由.
如图1,抛物线 与 轴交于点 , ,与 轴交于点 ,顶点为 ,直线 交 轴于点 .
(1)求抛物线的解析式.
(2)如图2,将 沿直线 平移得到 .
①当点 落在抛物线上时,求点 的坐标.
②在 移动过程中,存在点 使 为直角三角形,请直接写出所有符合条件的点 的坐标.
我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.
图形的变化 |
示例图形 |
与对应线段有关的结论 |
与对应点有关的结论 |
平移 |
(1) |
|
|
轴对称 |
(2) |
(3) |
|
旋转 |
;对应线段 和 所在的直线相交所成的角与旋转角相等或互补. |
(4) |
如图1,经过原点 的抛物线 、 为常数, 与 轴相交于另一点 .直线 在第一象限内和此抛物线相交于点 ,与抛物线的对称轴相交于点 .
(1)求抛物线的解析式;
(2)在 轴上找一点 ,使以点 、 、 为顶点的三角形与以点 、 、 为顶点的三角形相似,求满足条件的点 的坐标;
(3)直线 沿着 轴向右平移得到直线 , 与线段 相交于点 ,与 轴下方的抛物线相交于点 ,过点 作 轴于点 .把 沿直线 折叠,当点 恰好落在抛物线上时(图 ,求直线 的解析式;
(4)在(3)问的条件下(图 ,直线 与 轴相交于点 ,把 绕点 顺时针旋转 得到△ ,点 为直线 上的动点.当△ 为等腰三角形时,求满足条件的点 的坐标.
如图①,在△ABC中, , , ,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).
(1)计算矩形EFGH的面积;
(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 时,求矩形平移的距离;
(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.
如图,已知 A(6,0), B(8,5),将线段 OA平移至 CB,点 D在 x轴正半轴上(不与点 A重合),连接 OC, AB, CD, BD.
(1)求对角线 AC的长;
(2)设点 D的坐标为( x,0),△ ODC与△ ABD的面积分别记为 S 1, S 2.设 S= S 1﹣ S 2,写出 S关于 x的函数解析式,并探究是否存在点 D使 S与△ DBC的面积相等?如果存在,用坐标形式写出点 D的位置;如果不存在,说明理由.