初中数学

如图,在 Rt Δ ABC 中, ACB = 90 ° .线段 EF 是由线段 AB 平移得到的,点 F 在边 BC 上, ΔEFD 是以 EF 为斜边的等腰直角三角形,且点 D 恰好在 AC 的延长线上.

(1)求证: ADE = DFC

(2)求证: CD = BF

来源:2021年福建省中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

在一次数学研究性学习中,小兵将两个全等的直角三角形纸片 ABC DEF 拼在一起,使点 A 与点 F 重合,点 C 与点 D 重合(如图 1 ) ,其中 ACB = DFE = 90 ° BC = EF = 3 cm AC = DF = 4 cm ,并进行如下研究活动.

活动一:将图1中的纸片 DEF 沿 AC 方向平移,连结 AE BD (如图 2 ) ,当点 F 与点 C 重合时停止平移.

[思考]图2中的四边形 ABDE 是平行四边形吗?请说明理由.

[发现]当纸片 DEF 平移到某一位置时,小兵发现四边形 ABDE 为矩形(如图 3 ) .求 AF 的长.

活动二:在图3中,取 AD 的中点 O ,再将纸片 DEF 绕点 O 顺时针方向旋转 α ( 0 α 90 ) ,连结 OB OE (如图 4 )

[探究]当 EF 平分 AEO 时,探究 OF BD 的数量关系,并说明理由.

来源:2020年浙江省嘉兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC CG BA BA 的延长线于点 G

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 F ,一条直角边与 AC 重合,另一条直角边恰好经过点 B .通过观察、测量 BF CG 的长度,得到 BF = CG .请给予证明.

猜想论证:

(2)当三角尺沿 AC 方向移动到图2所示的位置时,一条直角边仍与 AC 边重合,另一条直角边交 BC 于点 D ,过点 D DE BA 垂足为 E .此时请你通过观察、测量 DE DF CG 的长度,猜想并写出 DE DF CG 之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿 AC 方向继续移动到图3所示的位置(点 F 在线段 AC 上,且点 F 与点 C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,一次函数 y = 2 3 x + 4 的图象与 x 轴和 y 轴分别相交于 A B 两点.动点 P 从点 A 出发,在线段 AO 上以每秒3个单位长度的速度向点 O 作匀速运动,到达点 O 停止运动,点 A 关于点 P 的对称点为点 Q ,以线段 PQ 为边向上作正方形 PQMN .设运动时间为 t 秒.

(1)当 t = 1 3 秒时,点 Q 的坐标是  

(2)在运动过程中,设正方形 PQMN ΔAOB 重叠部分的面积为 S ,求 S t 的函数表达式;

(3)若正方形 PQMN 对角线的交点为 T ,请直接写出在运动过程中 OT + PT 的最小值.

来源:2018年江苏省淮安市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 A 的斜平移,如点 P ( 2 , 3 ) 经1次斜平移后的点的坐标为 ( 3 , 5 ) ,已知点 A 的坐标为 ( 1 , 0 )

(1)分别写出点 A 经1次,2次斜平移后得到的点的坐标.

(2)如图,点 M 是直线 l 上的一点,点 A 关于点 M 的对称点为点 B ,点 B 关于直线 l 的对称点为点 C

①若 A B C 三点不在同一条直线上,判断 ΔABC 是否是直角三角形?请说明理由.

②若点 B 由点 A n 次斜平移后得到,且点 C 的坐标为 ( 7 , 6 ) ,求出点 B 的坐标及 n 的值.

来源:2016年浙江省金华市义乌市(绍兴市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图1,在 ABCD 中, DH AB 于点 H CD 的垂直平分线交 CD 于点 E ,交 AB 于点 F AB = 6 DH = 4 BF : FA = 1 : 5

(1)如图2,作 FG AD 于点 G ,交 DH 于点 M ,将 ΔDGM 沿 DC 方向平移,得到△ CG ' M ' ,连接 M ' B

①求四边形 BHMM ' 的面积;

②直线 EF 上有一动点 N ,求 ΔDNM 周长的最小值.

(2)如图3,延长 CB EF 于点 Q ,过点 Q QK / / AB ,过 CD 边上的动点 P PK / / EF ,并与 QK 交于点 K ,将 ΔPKQ 沿直线 PQ 翻折,使点 K 的对应点 K ' 恰好落在直线 AB 上,求线段 CP 的长.

来源:2018年山东省潍坊市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC .将 ΔABC 沿着 BC 方向平移得到 ΔDEF ,其中点 E 在边 BC 上, DE AC 相交于点 O

(1)求证: ΔOEC 为等腰三角形;

(2)连接 AE DC AD ,当点 E 在什么位置时,四边形 AECD 为矩形,并说明理由.

来源:2019年江苏省连云港市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

边长为6的等边 ΔABC 中,点 D E 分别在 AC BC 边上, DE / / AB EC = 2 3

(1)如图1,将 ΔDEC 沿射线 EC 方向平移,得到△ D ' E ' C ' ,边 D ' E ' AC 的交点为 M ,边 C ' D ' ACC ' 的角平分线交于点 N ,当 CC ' 多大时,四边形 MCND ' 为菱形?并说明理由.

(2)如图2,将 ΔDEC 绕点 C 旋转 α ( 0 ° < α < 360 ° ) ,得到△ D ' E ' C ,连接 AD ' BE ' .边 D ' E ' 的中点为 P

①在旋转过程中, AD ' BE ' 有怎样的数量关系?并说明理由;

②连接 AP ,当 AP 最大时,求 AD ' 的值.(结果保留根号)

来源:2017年山东省潍坊市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知: Rt Δ EFP 和矩形 ABCD 如图①摆放(点 P 与点 B 重合),点 F B ( P ) C 在同一直线上, AB = EF = 6 cm BC = FP = 8 cm EFP = 90 ° .如图②, ΔEFP 从图①的位置出发,沿 BC 方向匀速运动,速度为 1 cm / s EP AB 交于点 G ;同时,点 Q 从点 C 出发,沿 CD 方向匀速运动,速度为 1 cm / s .过点 Q QM BD ,垂足为 H ,交 AD 于点 M ,连接 AF PQ ,当点 Q 停止运动时, ΔEFP 也停止运动.设运动时间为 t ( s ) ( 0 < t < 6 ) ,解答下列问题:

(1)当 t 为何值时, PQ / / BD

(2)设五边形 AFPQM 的面积为 y ( c m 2 ) ,求 y t 之间的函数关系式;

(3)在运动过程中,是否存在某一时刻 t ,使 S 五边形AFPQM : S 矩形ABCD = 9 : 8 ?若存在,求出 t 的值;若不存在,请说明理由.

(4)在运动过程中,是否存在某一时刻 t ,使点 M 在线段 PG 的垂直平分线上?若存在,求出 t 的值;若不存在,请说明理由.

来源:2017年山东省青岛市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,抛物线 y = a x 2 + bx + 6 x 轴交于点 A ( 2 , 0 ) B ( 6 , 0 ) ,与 y 轴交于点 C ,顶点为 D ,直线 AD y 轴于点 E

(1)求抛物线的解析式.

(2)如图2,将 ΔAOE 沿直线 AD 平移得到 ΔNMP

①当点 M 落在抛物线上时,求点 M 的坐标.

②在 ΔNMP 移动过程中,存在点 M 使 ΔMBD 为直角三角形,请直接写出所有符合条件的点 M 的坐标.

来源:2019年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.

图形的变化

示例图形

与对应线段有关的结论

与对应点有关的结论

平移

(1) 

AA ' = BB '

AA ' / / BB '

轴对称

(2)  

(3)  

旋转

AB = A ' B ' ;对应线段 AB A ' B ' 所在的直线相交所成的角与旋转角相等或互补.

(4)  

来源:2016年江苏省南京市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1,经过原点 O 的抛物线 y = a x 2 + bx ( a b 为常数, a 0 ) x 轴相交于另一点 A ( 3 , 0 ) .直线 l : y = x 在第一象限内和此抛物线相交于点 B ( 5 , t ) ,与抛物线的对称轴相交于点 C

(1)求抛物线的解析式;

(2)在 x 轴上找一点 P ,使以点 P O C 为顶点的三角形与以点 A O B 为顶点的三角形相似,求满足条件的点 P 的坐标;

(3)直线 l 沿着 x 轴向右平移得到直线 l ' l ' 与线段 OA 相交于点 M ,与 x 轴下方的抛物线相交于点 N ,过点 N NE x 轴于点 E .把 ΔMEN 沿直线 l ' 折叠,当点 E ' 恰好落在抛物线上时(图 2 ) ,求直线 l ' 的解析式;

(4)在(3)问的条件下(图 3 ) ,直线 l ' y 轴相交于点 K ,把 ΔMOK 绕点 O 顺时针旋转 90 ° 得到△ M ' OK ' ,点 F 为直线 l ' 上的动点.当△ M ' FK ' 为等腰三角形时,求满足条件的点 F 的坐标.

来源:2018年湖南省湘西州中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

如图①,在△ABC中, ACB 90 ° B 30 ° AC 1 DAB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).

(1)计算矩形EFGH的面积;

(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为 3 16 时,求矩形平移的距离;

(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.

来源:2016年湖南省益阳市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,已知 A(6,0), B(8,5),将线段 OA平移至 CB,点 Dx轴正半轴上(不与点 A重合),连接 OCABCDBD

(1)求对角线 AC的长;

(2)设点 D的坐标为( x,0),△ ODC与△ ABD的面积分别记为 S 1S 2.设 SS 1S 2,写出 S关于 x的函数解析式,并探究是否存在点 D使 S与△ DBC的面积相等?如果存在,用坐标形式写出点 D的位置;如果不存在,说明理由.

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,直线y=2x与反比例函数 y = k x 在第一象限内的图象交于点Am,2),将直线y=2x向下平移后与反比例函数 y = k x 在第一象限内的图象交于点P,且△POA的面积为2.

(1)求k的值.

(2)求平移后的直线的函数解析式.

来源:2016年湖北省咸宁市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

初中数学平移的性质解答题