对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点 A 的斜平移,如点 P ( 2 , 3 ) 经1次斜平移后的点的坐标为 ( 3 , 5 ) ,已知点 A 的坐标为 ( 1 , 0 ) .
(1)分别写出点 A 经1次,2次斜平移后得到的点的坐标.
(2)如图,点 M 是直线 l 上的一点,点 A 关于点 M 的对称点为点 B ,点 B 关于直线 l 的对称点为点 C .
①若 A 、 B 、 C 三点不在同一条直线上,判断 ΔABC 是否是直角三角形?请说明理由.
②若点 B 由点 A 经 n 次斜平移后得到,且点 C 的坐标为 ( 7 , 6 ) ,求出点 B 的坐标及 n 的值.
如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,阅读下列材料, (1)连接AC、BD,由三角形中位线的性质定理可证四边形EFGH是________; (2)对角线AC、BD满足条件_______时,四边形EFGH是矩形; (3)对角线AC、BD满足条件_______时,四边形EFGH是菱形; (4)对角线AC、BD满足条件_________时,四边形EFGH是正方形.
如图,在△ABC中,AD为角平分线,CE⊥AD,F为BC中点. 求证:EF=(AB-AC).
如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.
如图,在四边形ABCD中,E、F、G、H分别是AD、BD、BC、AC上的中点,AB=5,CD=7.求四边形EFGH的周长.
如图,在△ABC中,点F是BC的中点,AD平分∠BAC,CE⊥AD于点D,交AB于点E,连接DF,已知AB=16,AC=10,求DF的长.