初中数学

如图1, Rt Δ ACB 中, C = 90 ° ,点 D AC 上, CBD = A ,过 A D 两点的圆的圆心 O AB 上.

(1)利用直尺和圆规在图1中画出 O (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);

(2)判断 BD 所在直线与(1)中所作的 O 的位置关系,并证明你的结论;

(3)设 O AB 于点 E ,连接 DE ,过点 E EF BC F 为垂足,若点 D 是线段 AC 的黄金分割点(即 DC AD = AD AC ) ,如图2,试说明四边形 DEFC 是正方形).

来源:2017年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称这个三角形为“智慧三角形”.

理解:

(1)如图1,已知 A B O 上两点,请在圆上找出满足条件的点 C ,使 ΔABC 为“智慧三角形”(画出点 C 的位置,保留作图痕迹);

(2)如图2,在正方形 ABCD 中, E BC 的中点, F CD 上一点,且 CF = 1 4 CD ,试判断 ΔAEF 是否为“智慧三角形”,并说明理由;

运用:

(3)如图3,在平面直角坐标系 xOy 中, O 的半径为1,点 Q 是直线 y = 3 上的一点,若在 O 上存在一点 P ,使得 ΔOPQ 为“智慧三角形”,当其面积取得最小值时,直接写出此时点 P 的坐标.

来源:2017年湖北省咸宁市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

已知四边形 ABCD O 的内接四边形, AC O 的直径, DE AB ,垂足为 E

(1)延长 DE O 于点 F ,延长 DC FB 交于点 P ,如图1.求证: PC = PB

(2)过点 B BG AD ,垂足为 G BG DE 于点 H ,且点 O 和点 A 都在 DE 的左侧,如图2.若 AB = 3 DH = 1 OHD = 80 ° ,求 BDE 的大小.

来源:2018年福建省中考数学试卷(A卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知点 A ( 5 , 0 ) ,以原点 O 为圆心、3为半径作圆. P 从点 O 出发,以每秒1个单位的速度沿 y 轴正半轴运动,运动时间为 t ( s ) .连接 AP ,将 ΔOAP 沿 AP 翻折,得到 ΔAPQ .求 ΔAPQ 有一边所在直线与 O 相切时 t 的值.

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图1, D O 的直径 BC 上的一点,过 D DE BC O E N F O 上的一点,过 F 的直线分别与 CB DE 的延长线相交于 A P ,连接 CF PD M C = 1 2 P

(1)求证: PA O 的切线;

(2)若 A = 30 ° O 的半径为4, DM = 1 ,求 PM 的长;

(3)如图2,在(2)的条件下,连接 BF BM ;在线段 DN 上有一点 H ,并且以 H D C 为顶点的三角形与 ΔBFM 相似,求 DH 的长度.

来源:2018年四川省广元市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,以原点 O 为圆心,3为半径的圆与 x 轴分别交于 A B 两点(点 B 在点 A 的右边), P 是半径 OB 上一点,过 P 且垂直于 AB 的直线与 O 分别交于 C D 两点(点 C 在点 D 的上方),直线 AC DB 交于点 E .若 AC : CE = 1 : 2

(1)求点 P 的坐标;

(2)求过点 A 和点 E ,且顶点在直线 CD 上的抛物线的函数表达式.

来源:2017年江苏省无锡市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,已知 OA = 6 OB = 8 BC = 2 P OB AB 均相切,点 P 是线段 AC 与抛物线 y = a x 2 的交点,则 a 的值为 (    )

A.

4

B.

9 2

C.

11 2

D.

5

来源:2021年四川省乐山市中考数学试卷
  • 更新:2023-03-29
  • 题型:未知
  • 难度:未知

已知,如图, ΔABC 中, AB = 10 BC = 6 AC = 8 ,半径为1的 O 与三角形的边 AB AC 都相切,点 P O 上一动点,点 Q BC 边上一动点,则 PQ 的最大值与最小值的和为 (    )

A.11B. 5 2 + 4 C. 5 2 + 5 D.12

来源:2017年江苏省无锡市中考数学试卷(副卷)
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中,对角线 AC BD 相交于点 O AC = 12 cm BD = 16 cm ,动点 N 从点 D 出发,沿线段 DB 2 cm / s 的速度向点 B 运动,同时动点 M 从点 B 出发,沿线段 BA 1 cm / s 的速度向点 A 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 t ( s ) ( t > 0 ) ,以点 M 为圆心, MB 长为半径的 M 与射线 BA ,线段 BD 分别交于点 E F ,连接 EN

(1)求 BF 的长(用含有 t 的代数式表示),并求出 t 的取值范围;

(2)当 t 为何值时,线段 EN M 相切?

(3)若 M 与线段 EN 只有一个公共点,求 t 的取值范围.

来源:2017年山东省烟台市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

已知 ΔABC 内接于 O AB = AC BAC = 42 ° ,点 D O 上一点.

(Ⅰ)如图①,若 BD O 的直径,连接 CD ,求 DBC ACD 的大小;

(Ⅱ)如图②,若 CD / / BA ,连接 AD ,过点作 O 的切线,与 OC 的延长线交于点 E ,求 E 的大小.

来源:2021年天津市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

如果三角形三边的长 a b c 满足 a + b + c 3 = b ,那么我们就把这样的三角形叫做“匀称三角形”,如:三边长分别为1,1,1或3,5,7, 的三角形都是“匀称三角形”.

(1)如图1,已知两条线段的长分别为 a c ( a < c ) .用直尺和圆规作一个最短边、最长边的长分别为 a c 的“匀称三角形”(不写作法,保留作图痕迹);

(2)如图2, ΔABC 中, AB = AC ,以 AB 为直径的 O BC 于点 D ,过点 D O 的切线交 AB 延长线于点 E ,交 AC 于点 F ,若 BE CF = 5 3 ,判断 ΔAEF 是否为“匀称三角形”?请说明理由.

来源:2016年江苏省镇江市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, C O 上一点 ( C 不与点 A B 重合)连接 AC BC ,过点 C CD AB ,垂足为点 D .将 ΔACD 沿 AC 翻折,点 D 落在点 E 处得 ΔACE AE O 于点 F

(1)求证: CE O 的切线;

(2)若 BAC = 15 ° OA = 2 ,求阴影部分面积.

来源:2021年四川省达州市中考数学试卷
  • 更新:2021-08-11
  • 题型:未知
  • 难度:未知

已知 AB CD O 的两条弦,直线 AB CD 互相垂直,垂足为 E ,连接 AC ,过点 B BF AC ,垂足为 F ,直线 BF 交直线 CD 于点 M

(1)如图1,当点 E O 内时,连接 AD AM BD ,求证: AD = AM

(2)如图2,当点 E O 外时,连接 AD AM ,求证: AD = AM

(3)如图3,当点 E O 外时, ABF 的平分线与 AC 交于点 H ,若 tan C = 4 3 ,求 tan ABH 的值.

来源:2016年山东省莱芜市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, D E O 上位于 AB 异侧的两点,连接 BD 并延长至点 C ,使得 CD = BD ,连接 AC O 于点 F ,连接 AE DE DF

(1)证明: E = C

(2)若 E = 55 ° ,求 BDF 的度数;

(3)设 DE AB 于点 G ,若 DF = 4 cos B = 2 3 E AB ̂ 的中点,求 EG · ED 的值.

来源:2016年江苏省苏州市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

初中数学圆的综合题试题