如图1, Rt Δ ACB 中, ∠ C = 90 ° ,点 D 在 AC 上, ∠ CBD = ∠ A ,过 A 、 D 两点的圆的圆心 O 在 AB 上.
(1)利用直尺和圆规在图1中画出 ⊙ O (不写作法,保留作图痕迹,并用黑色水笔把线条描清楚);
(2)判断 BD 所在直线与(1)中所作的 ⊙ O 的位置关系,并证明你的结论;
(3)设 ⊙ O 交 AB 于点 E ,连接 DE ,过点 E 作 EF ⊥ BC , F 为垂足,若点 D 是线段 AC 的黄金分割点(即 DC AD = AD AC ) ,如图2,试说明四边形 DEFC 是正方形).
如图,已知 ∠ MAN ,及线段 a , b ( a > b ) .
(1)仅用没有刻度的直尺和圆规分别在射线 AM 、 AN 上确定点 B 、点 C ,使得 AC = b , AB + BC = a (保留作图痕迹,不要作法);
(2)若 sin ∠ MAN = 5 13 , a = 61 , b = 39 ,则 ΔABC 的面积为 .
如图, ΔABC 中, ∠ ACB > ∠ ABC .
(1)用直尺和圆规在 ∠ ACB 的内部作射线 CM ,使 ∠ ACM = ∠ ABC (不要求写作法,保留作图痕迹);
(2)若(1)中的射线 CM 交 AB 于点 D , AB = 9 , AC = 6 ,求 AD 的长.
“直角”在初中几何学习中无处不在.
如图,已知 ∠ AOB ,请仿照小丽的方式,再用两种不同的方法判断 ∠ AOB 是否为直角(仅限用直尺和圆规).
如图,已知△ABC,请用圆规和直尺作出△ABC的一条中位线EF(不写作法,保留作图痕迹).