如图, P , Q 是方格纸中的两格点,请按要求画出以 PQ 为对角线的格点四边形.
(1)画出一个面积最小的 ▱ PAQB .
(2)画出一个四边形 PCQD ,使其是轴对称图形而不是中心对称图形,且另一条对角线 CD 由线段 PQ 以某一格点为旋转中心旋转得到.
按要求作图,不要求写作法,但要保留作图痕迹.
(1)如图1, A 为 ⊙ O 上一点,请用直尺(不带刻度)和圆规作出 ⊙ O 的内接正方形;
(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.
请运用上述性质,只用直尺(不带刻度)作图.
①如图2,在 ▱ ABCD 中, E 为 CD 的中点,作 BC 的中点 F .
②如图3,在由小正方形组成的 4 × 3 的网格中, ΔABC 的顶点都在小正方形的顶点上,作 ΔABC 的高 AH .
如图, AB 为半圆 O 的直径, C 为半圆上一点, AC < BC .
(1)请用直尺(不含刻度)与圆规在 BC 上作一点 D ,使得直线 OD 平分 ABC 的周长;(不要求写作法,但要保留作图痕迹)
(2)在(1)的条件下,若 AB = 10 , OD = 2 5 ,求 ΔABC 的面积.
如图, ΔABC 中, ∠ C = 90 ° , AC = 4 , BC = 8 .
(1)用直尺和圆规作 AB 的垂直平分线;(保留作图痕迹,不要求写作法)
(2)若(1)中所作的垂直平分线交 BC 于点 D ,求 BD 的长.
如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中, ΔOAB 的三个顶点 O ( 0 , 0 ) 、 A ( 4 , 1 ) 、 B ( 4 , 4 ) 均在格点上.
(1)画出 ΔOAB 关于 y 轴对称的△ O A 1 B 1 ,并写出点 A 1 的坐标;
(2)画出 ΔOAB 绕原点 O 顺时针旋转 90 ° 后得到的△ O A 2 B 2 ,并写出点 A 2 的坐标;
(3)在(2)的条件下,求线段 OA 在旋转过程中扫过的面积(结果保留 π ) .