初中数学

如图,已知 O 是等边三角形 ABC 的外接圆,点 D 在圆上,在 CD 的延长线上有一点 F ,使 DF = DA AE / / BC CF E

(1)求证: EA O 的切线;

(2)求证: BD = CF

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, AC = BC ,以 BC 为直径的 O 分别与 AB AC 相交于点 D E ,过点 D DF AC ,垂足为点 F

(1)求证: DF O 的切线;

(2)分别延长 CB FD ,相交于点 G A = 60 ° O 的半径为6,求阴影部分的面积.

来源:2017年湖南省张家界市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,过 O 点作 OP AB ,交弦 AC 于点 D ,交 O 于点 E ,且使 PCA = ABC

(1)求证: PC O 的切线;

(2)若 P = 60 ° PC = 2 ,求 PE 的长.

来源:2017年湖南省永州市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,已知 BC O 的直径,点 D BC 延长线上的一点,点 A 为圆上一点,且 AB = AD AC = CD

(1)求证: ΔACD ΔBAD

(2)求证: AD O 的切线.

来源:2017年湖南省怀化市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

如图, O ΔABC 的外接圆, AC 为直径,弦 BD = BA BE DC DC 的延长线于点 E

(1)求证: 1 = BAD

(2)求证: BE O 的切线.

来源:2016年四川省自贡市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,已知在 Rt Δ ABC 中, ABC = 90 ° ,以 AB 为直径的 O AC 交于点 D ,点 E BC 的中点,连接 BD DE

(1)若 AD AB = 1 3 ,求 sin C

(2)求证: DE O 的切线.

来源:2017年贵州省铜仁市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,已知 AB O 的直径,点 P 为圆上一点,点 C AB 延长线上一点, PA = PC C = 30 °

(1)求证: CP O 的切线.

(2)若 O 的直径为8,求阴影部分的面积.

来源:2016年贵州省铜仁市中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,点 A O 直径 BD 延长线上的一点, C O 上, AC = BC AD = CD

(1)求证: AC O 的切线;

(2)若 O 的半径为2,求 ΔABC 的面积.

来源:2016年贵州省黔西南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 D AE ̂ 上一点,且 BDE = CBE BD AE 交于点 F

(1)求证: BC O 的切线;

(2)若 BD 平分 ABE ,求证: D E 2 = DF DB

(3)在(2)的条件下,延长 ED BA 交于点 P ,若 PA = AO DE = 2 ,求 PD 的长.

来源:2016年贵州省黔南州中考数学试卷
  • 更新:2021-04-29
  • 题型:未知
  • 难度:未知

如图,在 O 中, AB 为直径, D E 为圆上两点, C 为圆外一点,且 E + C = 90 °

(1)求证: BC O 的切线.

(2)若 sin A = 3 5 BC = 6 ,求 O 的半径.

来源:2016年贵州省六盘水市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, D AC 上一点,且 CD = CB ,以 BC 为直径作 O ,交 BD 于点 E ,连接 CE ,过 D DF AB 于点 F BCD = 2 ABD

(1)求证: AB O 的切线;

(2)若 A = 60 ° DF = 3 ,求 O 的直径 BC 的长.

来源:2016年贵州省毕节地区中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,已知 AO Rt Δ ABC 的角平分线, ACB = 90 ° AC BC = 4 3 ,以 O 为圆心, OC 为半径的圆分别交 AO BC 于点 D E ,连接 ED 并延长交 AC 于点 F

(1)求证: AB O 的切线;

(2)求 tan CAO 的值;

(3)求 AD CF 的值.

来源:2017年广西柳州市中考数学试卷
  • 更新:2021-04-28
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,点 P 在对角线 AC 上,且 PA = PD O ΔPAD 的外接圆.

(1)求证: AB O 的切线;

(2)若 AC = 8 tan BAC = 2 2 ,求 O 的半径.

来源:2017年广西贵港市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 CD AB ,垂足为 H ,连接 AC ,过 BD ̂ 上一点 E EG / / AC CD 的延长线于点 G ,连接 AE CD 于点 F ,且 EG = FG ,连接 CE

(1)求证: ΔECF ΔGCE

(2)求证: EG O 的切线;

(3)延长 AB GE 的延长线于点 M ,若 tan G = 3 4 AH = 3 3 ,求 EM 的值.

来源:2017年广西北海市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

通过对下面数学模型的研究学习,解决问题.

【模型呈现】

如图,在 Rt Δ ABC ACB = 90 ° ,将斜边 AB 绕点 A 顺时针旋转 90 ° 得到 AD ,过点 D DE AC 于点 E ,可以推理得到 ΔABC ΔDAE ,进而得到 AC = DE BC = AE

我们把这个数学模型称为“ K 型”.

推理过程如下:

【模型应用】

如图,在 Rt Δ ABC 内接于 O ACB = 90 ° BC = 2 ,将斜边 AB 绕点 A 顺时针旋转一定的角度得到 AD ,过点 D DE AC 于点 E DAE = ABC DE = 1 ,连接 DO O 于点 F

(1)求证: AD O 的切线;

(2)连接 FC AB 于点 G ,连接 FB .求证: F G 2 = GO · GB

来源:2019年甘肃省兰州市中考数学试卷(a卷)
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

初中数学切线的判定试题