如图,已知 ⊙ O 是等边三角形 ABC 的外接圆,点 D 在圆上,在 CD 的延长线上有一点 F ,使 DF = DA , AE / / BC 交 CF 于 E .
(1)求证: EA 是 ⊙ O 的切线;
(2)求证: BD = CF .
解答题如图,在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.(1)求证:四边形CFDE是正方形; (2)若AC=6,BC=8,求△ABC的内切圆半径.
解答题如图,Rt△ABC中,∠C=90°,△ABC的内切圆⊙O与BC,CA,AB分别相切于点D,E,F(1)求证:四边形ODCE是正方形;(2)若BC=5、AC=12,⊙O的半径为R,求R的值.
解答题如图,Rt△ABC中,∠C=90°,⊙O为△ABC的内切圆,若AC=6,BC=8,求⊙O半径.
解答题△ABC外切于⊙O,切点分别为点D、E、F,∠A=60°,BC=7,⊙O的半径为.(1)求BF+CE的值; (2)求△ABC的周长.
解答题点D是△ABC内一点,AD平分∠ABC,延长AD交△ABC的外接圆于点E,BE=ED.(1)点D是否是△ABC的内心?说明理由;(2)点E是否是△BDC的外心?说明理由.