如图,在平面直角坐标系中,为坐标原点,点,点,的中线与轴交于点,且经过,,三点.
(1)求圆心的坐标;
(2)若直线与相切于点,交轴于点,求直线的函数表达式;
(3)在(2)的条件下,在过点且以圆心为顶点的抛物线上有一动点,过点作轴,交直线于点.若以为半径的与直线相交于另一点.当时,求点的坐标.
如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点,它们的半径分别为1,2,3,,按照“加1”依次递增;一组平行线,,,,,都与轴垂直,相邻两直线的间距为1,其中与轴重合.若半径为2的圆与在第一象限内交于点,半径为3的圆与在第一象限内交于点,,半径为的圆与在第一象限内交于点,则点的坐标为 为正整数)
如图, 是 的内接三角形, ,过点 的圆的切线交 于点 ,则 的度数为
A. |
|
B. |
|
C. |
|
D. |
|
探究活动一:
如图1,某数学兴趣小组在研究直线上点的坐标规律时,在直线上的三点、、,有,,发现,兴趣小组提出猜想:若直线上任意两点坐
标,,,,则是定值.通过多次验证和查阅资料得知,猜想成立,是定值,并且是直线中的,叫做这条直线的斜率.
请你应用以上规律直接写出过、两点的直线的斜率 .
探究活动二
数学兴趣小组继续深入研究直线的“斜率”问题,得到正确结论:任意两条不和坐标轴平行的直线互相垂直时,这两条直线的斜率之积是定值.
如图2,直线与直线垂直于点,,,.请求出直线与直线的斜率之积.
综合应用
如图3,为以点为圆心,的长为半径的圆,,,请结合探究活动二的结论,求出过点的的切线的解析式.
如图,线段 经过 的圆心, , 分别与 相切于点 , .若 , ,则 的长度为
A. |
|
B. |
|
C. |
|
D. |
|
如图,内接于,为直径,作交于点,延长,交于点,过点作的切线,交于点.
(1)求证:;
(2)如果,,求弦的长.
如图,为直角边上一点,以为半径的与斜边相切于点,交于点,已知,.则图中阴影部分的面积是 .
如图,、是的两条直径,过点的的切线交的延长线于点,连接、.
(1)求证;;
(2)若是的中点,,求的半径.
如图,是的直径,是的弦,过点作的切线,交的延长线于点,过点作于点,交的延长线于点.
(1)求证:;
(2)若,,求的半径.
与相切于点,直线与相离,于点,且,与交于点,的延长线交直线于点.
(1)求证:;
(2)若的半径为3,求线段的长;
(3)若在上存在点,使是以为底边的等腰三角形,求的半径的取值范围.
如图,在中,.的半径为2,点是边上的动点,过点作的一条切线(点为切点),则线段长的最小值为 .
如图,等腰 的内切圆 与 , , 分别相切于点 , , ,且 , ,则 的长是
A. |
|
B. |
|
C. |
|
D. |
|
已知关于的一元二次方程.
(1)求证:无论为任何实数,此方程总有两个实数根;
(2)若方程的两个实数根为、,满足,求的值;
(3)若的斜边为5,另外两条边的长恰好是方程的两个根、,求的内切圆半径.