如图,为的直径,且,点是上的一动点(不与,重合),过点作的切线交的延长线于点,点是的中点,连接.
(1)求证:是的切线;
(2)当时,求阴影部分面积.
如图1,的三个顶点、、分别落在抛物线的图象上,点的横坐标为,点的纵坐标为.(点在点的左侧)
(1)求点、的坐标;
(2)将绕点逆时针旋转得到△,抛物线经过、两点,已知点为抛物线的对称轴上一定点,且点恰好在以为直径的圆上,连接、,求△的面积;
(3)如图2,延长交抛物线于点,连接,在坐标轴上是否存在点,使得以、、为顶点的三角形与△相似.若存在,请求出点的坐标;若不存在,请说明理由.
如图,为的直径,点为延长线上的一点,过点作的切线,切点为,过、两点分别作的垂线、,垂足分别为、,连接,则下列结论正确的是 .(写出所有正确结论的序号)
①平分;
②;
③若,,则的长为;
④若,,则有.
如图,在中,是斜边的中点,以为直径作圆交于点,延长至,使,连接、,交圆于点.
(1)判断四边形的形状,并说明理由;
(2)求证:;
(3)若,,求的长.
如图1,已知外一点向作切线,点为切点,连接并延长交于点,连接并延长交于点,过点作,分别交于点,交于点,连接.
(1)求证:;
(2)如图2,当时
①求的度数;
②连接,在上是否存在点使得四边形是菱形.若存在,请直接写出的值;若不存在,请说明理由.
如图,点在以为直径的上,平分,,过点作的切线交的延长线于点.
(1)求证:直线是的切线.
(2)求证:.
如图,、、、、是上的5等分点,连接、、、、,得到一个五角星图形和五边形.
(1)计算的度数;
(2)连接,证明:;
(3)求证:.
如图,点、、在半径为8的上,过点作,交延长线于点.连接,且.
(1)求证:是的切线;
(2)求图中阴影部分的面积.
如图,已知是的直径,与相切于点,且.
(1)求证:是的切线;
(2)延长交于点.若,的半径为2,求的长.(结果保留
如图,在中,,以为直径作,点为上一点,且,连接并延长交的延长线于点.
(1)判断直线与的位置关系,并说明理由;
(2)若,,求圆的半径及的长.
如图,顶点为的抛物线与轴交于,两点,与轴交于点,过点作轴交抛物线于另一点,作轴,垂足为点,双曲线经过点,连接,.
(1)求抛物线的表达式;
(2)点,分别是轴,轴上的两点,当以,,,为顶点的四边形周长最小时,求出点,的坐标;
(3)动点从点出发,以每秒1个单位长度的速度沿方向运动,运动时间为秒,当为何值时,的度数最大?(请直接写出结果)
如图, 是 的直径,直线 与 相切于点 ,过 , 分别作 , ,垂足为点 , ,连接 , ,若 , ,则 的长为
A. |
|
B. |
|
C. |
|
D. |
|