如图, 为 的直径, 为 上一点, 和过点 的切线互相垂直,垂足为 ,且交 于点 .连接 , ,相交于点 .
(1)求证: ;
(2)若 , ,求直径 的长.
如图,在⊙ O中, B是⊙ O上的一点,∠ ABC=120°,弦 AC=2 ,弦 BM平分∠ ABC交 AC于点 D,连接 MA, MC.
(1)求⊙ O半径的长;
(2)求证: AB+ BC= BM.
如图,在 中,弦 与直径 垂直,垂足为 , 的延长线上有
一点 ,满足 .过点 作 ,交 的延长线于点 ,连接 交 于点 .
(1)求证: 是 的切线;
(2)如果 , ,求 的值;
(3)如果 ,求证: .
如图,在⊙O中,直径AB垂直弦CD于E,过点A作∠DAF=∠DAB,过点D作AF的垂线,垂足为F,交AB的延长线于点P,连接CO并延长交⊙O于点G,连接EG,已知DE=4,AE=8.
(1)求证:DF是⊙O的切线;
(2)求证:OC2=OE•OP;
(3)求线段EG的长.
如图,在平面直角坐标系中, O(0,0), A(0,﹣6), B(8,0)三点在⊙ P上, M为劣弧的 中点.
(1)求圆的半径及圆心 P的坐标;
(2)求证: AM是∠ OAB的平分线;
(3)连接 BM并延长交 y轴于点 N,求 N, M点的坐标.
如图,已知⊙ O的直径为 AB, AC⊥ AB于点 A, BC与⊙ O相交于点 D,在 AC上取一点 E,使得 ED= EA.
(1)求证: ED是⊙ O的切线;
(2)当 OE=10时,求 BC的长.
如图, 是 的弦,过 的中点 作 ,垂足为 ,过点 作直线 交 的延长线于点 ,使得 .
(1)求证: 是 的切线;
(2)若 , ,求 的面积.
如图,已知: 是 的直径,点 在 上, 是 的切线, 于点 , 是 延长线上一点, 交 于点 ,连接 、 .
(1)求证: 平分 .
(2)若 ,
①求 的度数;
②若 的半径为 ,求线段 的长.
我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点在以(南北方向)为直径的上,,交于点,垂足为,,弦、分别交于点、,且.
(1)比较 与 的大小;
(2)若,求证:;
(3)设直线、相交所成的锐角为,试确定时,点的位置.
如图1,已知 是 的外接圆, 的平分线 交 于点 ,交 于点 ,连接 , .
(1)求证: ;
(2)如图2,在图1的基础上做 的直径 交 于点 ,连接 ,过点 做 的切线 ,若 ,求 的度数;
(3)在(2)的条件下,若 的面积为 , 与 的面积比为 ,求 的长.
如图,线段 是 的直径,弦 于点 ,点 是 上任意一点, , .
(1)求 的半径 的长度;
(2)求 ;
(3)直线 交直线 于点 ,直线 交 于点 ,连接 交 于点 ,求 的值.
如图,已知 是 的直径, 是 所对的圆周角, .
(1)求 的度数;
(2)过点 作 ,垂足为 , 的延长线交 于点 .若 ,求 的长.
如图所示, 的半径为4,点 是 上一点,直线 过点 ; 是 上的一个动点(不与点 重合),过点 作 于点 ,交 于点 ,直径 延长线交直线 于点 ,点 是 的中点.
(1)求证:直线 是 的切线;
(2)若 ,求 的长.
如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.
求证:(1)△ACO≌△BDO;(2)CE=DF.