初中数学

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图所示,在矩形 ABCD 中,点 E 在线段 CD 上,点 F 在线段 AB 的延长线上,连接 EF 交线段 BC 于点 G ,连接 BD ,若 DE = BF = 2

(1)求证:四边形 BFED 是平行四边形;

(2)若 tan ABD = 2 3 ,求线段 BG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD中, AB=3, BC=4,将矩形 ABCD绕点 C按顺时针方向旋转α角,得到矩形 A' B' C' D', B' CAD交于点 EAD的延长线与 A' D'交于点 F

(1)如图①,当α=60°时,连接 DD',求 DD'和 A' F的长;

(2)如图②,当矩形 A' B' CD'的顶点 A'落在 CD的延长线上时,求 EF的长;

(3)如图③,当 AEEF时,连接 ACCF,求 ACCF的值.

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6AD=8PE分别是线段ACBC上的点,且四边形PEFD为矩形.

)若PCD是等腰三角形时,求AP的长;

)若 AP = 2 ,求CF的长

来源:2017年福建省中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点于点,连接

(1)求证:四边形是菱形;

(2)若,求四边形的面积.

来源:2019年山东省滨州市中考数学试卷(a卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

在矩形 ABCD 中,点 E BC 上, AE = AD DF AE ,垂足为 F

(1)求证: DF = AB

(2)若 FDC = 30 ° ,且 AB = 4 ,求 AD

来源:2018年湖南省张家界市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

有一块形状如图的五边形余料,要在这块余料中截取一块矩形材料,其中一条边在上,并使所截矩形材料的面积尽可能大.

(1)若所截矩形材料的一条边是,求矩形材料的面积.

(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.

来源:2019年浙江省绍兴市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形组成的方格中,点都在格点上.

(1)在给定的方格中将线段平移到,使得四边形是矩形,且点都落在格点上.画出四边形,并叙述线段的平移过程;

(2)在方格中画出关于直线对称的

(3)直接写出的交点到线段的距离.

来源:2016年福建省宁德市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH AD ,垂足为 H ,连接 AF

(1)求证: FH = ED

(2)当 AE 为何值时, ΔAEF 的面积最大?

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 BC = 4 M N 在对角线 AC 上,且 AM = CN E F 分别是 AD BC 的中点.

(1)求证: ΔABM ΔCDN

(2)点 G 是对角线 AC 上的点, EGF = 90 ° ,求 AG 的长.

来源:2019年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在矩形ABCD中,ECD的中点,HBE上的一点, EH EG = 3 ,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F

(1)求证: EC BG = EH BH

(2)若∠CGF=90°,求 AB BC 的值.

来源:2016年广西梧州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,AC是矩形ABCD的对角线,过AC的中点OEFAC,交BC于点E,交AD于点F,连接AECF

(1)求证:四边形AECF是菱形;

(2)若AB,∠DCF=30°,求四边形AECF的面积.(结果保留根号)

来源:2016年广西贺州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

如图,已知正方形的边长为1,正方形的面积为,点边上,点的延长线上,设以线段为邻边的矩形的面积为,且

(1)求线段的长;

(2)若点边的中点,连接,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题