初中数学

在矩形 ABCD CD 边上取一点 E ,将 ΔBCE 沿 BE 翻折,使点 C 恰好落在 AD 边上点 F 处.

(1)如图1,若 BC = 2 BA ,求 CBE 的度数;

(2)如图2,当 AB = 5 ,且 AF · FD = 10 时,求 BC 的长;

(3)如图3,延长 EF ,与 ABF 的角平分线交于点 M BM AD 于点 N ,当 NF = AN + FD 时,求 AB BC 的值.

来源:2020年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

阅读理解:

我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把 1 sin α 的值叫做这个平行四边形的变形度.

(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是  

猜想证明:

(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1S2 1 sin α 之间的数量关系,并说明理由;

拓展探究:

(3)如图2,在矩形ABCD中,EAD边上的一点,且 A B 2 AE AD ,这个矩形发生变形后为平行四边形A1B1C1D1E1E的对应点,连接B1E1B1D1,若矩形ABCD的面积为 4 π ( m > 0 ) ,平行四边形A1B1C1D1的面积为 2 π ( m > 0 ) ,试求∠A1E1B1+∠A1D1B1的度数.

来源:2016年湖北省咸宁市中考数学试卷
  • 更新:2021-04-08
  • 题型:未知
  • 难度:未知

中,.以为边作周长为18的矩形分别为的中点,连接.请你画出图形,并直接写出线段的长.

来源:2020年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,矩形 ABCD 的对角线 AC BD 相交于点 O ,延长 CB 至点 E ,使 BE = BC ,连按 AE

(1)求证:四边形 ADBE 是平行四边形;

(2)若 AB = 4 OB = 5 2 ,求四边形 ADBE 的周长.

来源:2016年辽宁省铁岭市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

已知:在矩形中,分别是边上的点,过点的垂线交于点,以为直径作半圆

(1)填空:点  (填“在”或“不在” 上;当时,的值是  

(2)如图1,在中,当时,求证:

(3)如图2,当的顶点是边的中点时,求证:

(4)如图3,点在线段的延长线上,若,连接于点,连接,当时,,求的值.

来源:2019年湖北省宜昌市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中,对角线 AC 的垂直平分线 EF 分别交 AD AC BC 于点 E O F ,连接 CE AF

(1)求证:四边形 AECF 为菱形;

(2)若 AB = 4 BC = 8 ,求菱形 AECF 的周长.

来源:2017年四川省巴中市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中,点 E AB 边上的一点,点 F 为对角线 BD 上的一点,且 EF AB

(1)若四边形 ABCD 为正方形.

①如图1,请直接写出 AE DF 的数量关系  DF = 2 AE  

②将 ΔEBF 绕点 B 逆时针旋转到图2所示的位置,连接 AE DF ,猜想 AE DF 的数量关系并说明理由;

(2)如图3,若四边形 ABCD 为矩形, BC = mAB ,其它条件都不变,将 ΔEBF 绕点 B 顺时针旋转 α ( 0 ° < α < 90 ° ) 得到△ E ' B F ' ,连接 A E ' D F ' ,请在图3中画出草图,并直接写出 A E ' D F ' 的数量关系.

来源:2017年辽宁省营口市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图所示,在矩形 ABCD 中,点 E 在线段 CD 上,点 F 在线段 AB 的延长线上,连接 EF 交线段 BC 于点 G ,连接 BD ,若 DE = BF = 2

(1)求证:四边形 BFED 是平行四边形;

(2)若 tan ABD = 2 3 ,求线段 BG 的长度.

来源:2021年湖南省株洲市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

(1)如图1,将矩形 ABCD 折叠,使 BC 落在对角线 BD 上,折痕为 BE ,点 C 落在点 C ' 处,若 ADB = 46 ° ,则 DBE 的度数为   °

(2)小明手中有一张矩形纸片 ABCD AB = 4 AD = 9

【画一画】

如图2,点 E 在这张矩形纸片的边 AD 上,将纸片折叠,使 AB 落在 CE 所在直线上,折痕设为 MN (点 M N 分别在边 AD BC 上),利用直尺和圆规画出折痕 MN (不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);

【算一算】

如图3,点 F 在这张矩形纸片的边 BC 上,将纸片折叠,使 FB 落在射线 FD 上,折痕为 GF ,点 A B 分别落在点 A ' B ' 处,若 AG = 7 3 ,求 B ' D 的长;

【验一验】

如图4,点 K 在这张矩形纸片的边 AD 上, DK = 3 ,将纸片折叠,使 AB 落在 CK 所在直线上,折痕为 HI ,点 A B 分别落在点 A ' B ' 处,小明认为 B ' I 所在直线恰好经过点 D ,他的判断是否正确,请说明理由.

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD中, AB=3, BC=4,将矩形 ABCD绕点 C按顺时针方向旋转α角,得到矩形 A' B' C' D', B' CAD交于点 EAD的延长线与 A' D'交于点 F

(1)如图①,当α=60°时,连接 DD',求 DD'和 A' F的长;

(2)如图②,当矩形 A' B' CD'的顶点 A'落在 CD的延长线上时,求 EF的长;

(3)如图③,当 AEEF时,连接 ACCF,求 ACCF的值.

来源:2017年内蒙古包头市中考数学试卷
  • 更新:2021-03-22
  • 题型:未知
  • 难度:未知

如图,矩形ABCD中,AB=6AD=8PE分别是线段ACBC上的点,且四边形PEFD为矩形.

)若PCD是等腰三角形时,求AP的长;

)若 AP = 2 ,求CF的长

来源:2017年福建省中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在边长为1的正方形组成的方格中,点都在格点上.

(1)在给定的方格中将线段平移到,使得四边形是矩形,且点都落在格点上.画出四边形,并叙述线段的平移过程;

(2)在方格中画出关于直线对称的

(3)直接写出的交点到线段的距离.

来源:2016年福建省宁德市中考数学试卷
  • 更新:2021-03-12
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH AD ,垂足为 H ,连接 AF

(1)求证: FH = ED

(2)当 AE 为何值时, ΔAEF 的面积最大?

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在矩形 ABCD 中, AB = 3 BC = 4 M N 在对角线 AC 上,且 AM = CN E F 分别是 AD BC 的中点.

(1)求证: ΔABM ΔCDN

(2)点 G 是对角线 AC 上的点, EGF = 90 ° ,求 AG 的长.

来源:2019年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在矩形ABCD中,ECD的中点,HBE上的一点, EH EG = 3 ,连接CH并延长交AB于点G,连接GE并延长交AD的延长线于点F

(1)求证: EC BG = EH BH

(2)若∠CGF=90°,求 AB BC 的值.

来源:2016年广西梧州市中考数学试卷
  • 更新:2021-03-05
  • 题型:未知
  • 难度:未知

初中数学矩形的性质解答题