已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.
(1)填空:点A (填“在”或“不在” )⊙O上;当AÊ=AF̂时,tan∠AEF的值是 ;
(2)如图1,在ΔEFH中,当FE=FH时,求证:AD=AE+DH;
(3)如图2,当ΔEFH的顶点F是边AD的中点时,求证:EH=AE+DH;
(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.
如图,AB//CD,AE平分∠CAB, ∠C=80°,求∠AED的度数
解分式方程:
如图,正方形OABC的面积为9,点O为坐标原点,点B在函数(k>0,x>0)的图象上,点P(m、n)是函数(k>0,x>0)的图象上任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合部分的面积为S. (1)求B点坐标和k的值;(2)当S=时,求点P的坐标。
(8分)在甲村至乙村的公路有一块山地正在开发.现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险,是否需要暂时封锁? 请通过计算进行说明。
某公司现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,问原来每天装配机器有多少台?