已知:在矩形ABCD中,E,F分别是边AB,AD上的点,过点F作EF的垂线交DC于点H,以EF为直径作半圆O.
(1)填空:点A (填“在”或“不在” )⊙O上;当AÊ=AF̂时,tan∠AEF的值是 ;
(2)如图1,在ΔEFH中,当FE=FH时,求证:AD=AE+DH;
(3)如图2,当ΔEFH的顶点F是边AD的中点时,求证:EH=AE+DH;
(4)如图3,点M在线段FH的延长线上,若FM=FE,连接EM交DC于点N,连接FN,当AE=AD时,FN=4,HN=3,求tan∠AEF的值.
某中学开展以“三创一办”为中心,以“校园文明”为主题的手抄报比赛.同学们积极参与,参赛同学每人交了一份得意作品,所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如下两幅统计图.请你根据图中所给信息解答下列问题: 各奖项人数百分比统计图各项奖人数统计图 (1)一等奖所占的百分比是______; (2)在此次比赛中,一共收到多少份参赛作品?请将条形统计图补充完整; (3)各奖项获奖学生分别有多少人?
如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE. (1)求证:△ABE≌△ACE (2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成能相互全等的四个三角形外(连接对角线即可,如图(1)),你还能用三种不同的方法将正方形分成面积相等的四个不全部全等的三角形吗?请分别在图(2)、(3)、(4)中画出示意图。
如图,已知一次函数的图象经过,两点,并且交x轴于点C,交y轴于点D, (1)求该一次函数的解析式; (2)求的值;
铜仁某水果店销售公司准备从外地购买西瓜31吨、柚子12吨,现计划租甲、乙两种货车共10辆,将这批水果运到铜仁,已知甲种货车可装西瓜4吨和柚子1吨,乙种货车可装西瓜、柚子2吨该公司安排甲、乙两种货车时有几种方案?若甲种货车每辆要付运输费用1800元,乙种货车每辆要付运输费用1200元,则该公司选择哪种方案运费最少?最少运费是多少?