如图,在矩形 中,对角线 的垂直平分线分别与边 和边 的延长线交于点 , ,与边 交于点 ,垂足为点 .
(1)求证: ;
(2)若 , ,请直接写出 的长为 .
【教材呈现】如图是华师版八年级下册数学教材第121页的部分内容.
1.把一张矩形纸片如图那样折一下,就可以裁出正方形纸片,为什么?
【问题解决】如图①,已知矩形纸片 ,将矩形纸片沿过点 的直线折叠,使点 落在边 上,点 的对应点为 ,折痕为 ,点 在 上.求证:四边形 是正方形.
【规律探索】由【问题解决】可知,图①中的△ 为等腰三角形.现将图①中的点 沿 向右平移至点 处(点 在点 的左侧),如图②,折痕为 ,点 在 上,点 在 上,那么 还是等腰三角形吗?请说明理由.
[结论应用]在图②中,当 时,将矩形纸片继续折叠如图③,使点 与点 重合,折痕为 ,点 在 上.要使四边形 为菱形,则 .
如图,在矩形 中, , ,点 为边 上的一点(与 、 不重合),四边形 关于直线 的对称图形为四边形 ,延长 交 于点 ,记四边形 的面积为 .
(1)若 ,求 的值;
(2)设 ,求 关于 的函数表达式.
如图,在矩形 中, 是 的中点, ,垂足为 .
(1)求证: ;
(2)若 , ,求 的长.
矩形 中, , .将矩形折叠,使点 落在点 处,折痕为 .
(1)如图①,若点 恰好在边 上,连接 ,求 的值;
(2)如图②,若 是 的中点, 的延长线交 于点 ,求 的长.
在矩形中,为边上一点,把沿翻折,使点恰好落在边上的点.
(1)求证:;
(2)若,,求的长;
(3)若,记,,求的值.
如图1,在矩形 中, , ,动点 , 分别从 点, 点同时以每秒1个单位长度的速度出发,且分别在边 , 上沿 , 的方向运动,当点 运动到点 时, , 两点同时停止运动.设点 运动的时间为 ,连接 ,过点 作 , 与边 相交于点 ,连接 .
(1)如图2,当 时,延长 交边 于点 .求证: ;
(2)在(1)的条件下,试探究线段 , , 三者之间的等量关系,并加以证明;
(3)如图3,当 时,延长 交边 于点 ,连接 ,若 平分 ,求 的值.
定义:对角线互相垂直且相等的四边形叫做垂等四边形.
(1)下面四边形是垂等四边形的是 ;(填序号)
①平行四边形;②矩形;③菱形;④正方形
(2)图形判定:如图1,在四边形 中, , ,过点 作 垂线交 的延长线于点 ,且 ,证明:四边形 是垂等四边形.
(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形 内接于 中, .求 的半径.
实践操作:
第一步:如图1,将矩形纸片 沿过点 的直线折叠,使点 落在 上的点 处,得到折痕 ,然后把纸片展平.
第二步:如图2,将图1中的矩形纸片 沿过点 的直线折叠,点 恰好落在 上的点 处,点 落在点 处,得到折痕 , 交 于点 , 交 于点 ,再把纸片展平.
问题解决:
(1)如图1,填空:四边形 的形状是 ;
(2)如图2,线段 与 是否相等?若相等,请给出证明;若不等,请说明理由;
(3)如图2,若 , ,求 的值.
如图,在矩形 中, ,点 是 边上的一点,将 沿着 折叠,点 刚好落在 边上点 处;点 在 上,将 沿着 折叠,点 刚好落在 上点 处,此时 ,
(1)求证: ;
(2)求 的长;
(3)求 的值.
如图,在矩形 中, ,将 向内翻折,点 落在 上,记为 ,折痕为 .若将 沿 向内翻折,点 恰好落在 上,记为 ,则 .
如图,四边形是矩形,是边上一点,点在的延长线上,且.
(1)求证:四边形是平行四边形;
(2)连接,若,,,求四边形的面积.
如图,在矩形中,,,点是边的中点,反比例函数的图象经过点,交边于点,直线的解析式为.
(1)求反比例函数的解析式和直线的解析式;
(2)在轴上找一点,使的周长最小,求出此时点的坐标;
(3)在(2)的条件下,的周长最小值是 .
在中,,,.以为边作周长为18的矩形,,分别为,的中点,连接.请你画出图形,并直接写出线段的长.