如图,在矩形OABC中,AB=2,BC=4,点D是边AB的中点,反比例函数y1=kx(x>0)的图象经过点D,交BC边于点E,直线DE的解析式为y2=mx+n(m≠0).
(1)求反比例函数y1=kx(x>0)的解析式和直线DE的解析式;
(2)在y轴上找一点P,使ΔPDE的周长最小,求出此时点P的坐标;
(3)在(2)的条件下,ΔPDE的周长最小值是 .
如图,在 ΔABC 中, ∠ ACB = 90 ° ,点 E 在 AC 的延长线上, ED ⊥ AB 于点 D ,若 BC = ED ,求证: CE = DB .
先化简,再求值: ( 2 a - 12 a a + 2 ) ÷ a - 4 a 2 + 4 a + 4 ,其中 a 满足 a 2 + 2 a - 3 = 0 .
计算: 2 - 1 + | 6 - 3 | + 2 3 sin 45 ° - ( - 2 ) 2020 · ( 1 2 ) 2020 .
如图1,在等腰三角形 ABC 中, ∠ A = 120 ° , AB = AC ,点 D 、 E 分别在边 AB 、 AC 上, AD = AE ,连接 BE ,点 M 、 N 、 P 分别为 DE 、 BE 、 BC 的中点.
(1)观察猜想.
图1中,线段 NM 、 NP 的数量关系是 , ∠ MNP 的大小为 .
(2)探究证明
把 ΔADE 绕点 A 顺时针方向旋转到如图2所示的位置,连接 MP 、 BD 、 CE ,判断 ΔMNP 的形状,并说明理由;
(3)拓展延伸
把 ΔADE 绕点 A 在平面内自由旋转,若 AD = 1 , AB = 3 ,请求出 ΔMNP 面积的最大值.
如图,抛物线 y = a x 2 - 3 ax - 4 a 的图象经过点 C ( 0 , 2 ) ,交 x 轴于点 A 、 B (点 A 在点 B 左侧),连接 BC ,直线 y = kx + 1 ( k > 0 ) 与 y 轴交于点 D ,与 BC 上方的抛物线交于点 E ,与 BC 交于点 F .
(1)求抛物线的解析式及点 A 、 B 的坐标;
(2) EF DF 是否存在最大值?若存在,请求出其最大值及此时点 E 的坐标;若不存在,请说明理由.