在直角三角形ABC中,角A=90度,AB=8,AC=6,若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒钟2个单位长度,过点D作DE平行于BC交于E,设动点D运动的时间为x秒,AE的长为y。(1)求y与x之间的函数关系式,并写出自变量x的取值范围(2)求出△BDE的面积S与x之间的函数关系式;(3)当x为何值时,△BDE的面积S有最大值,最大值为多少?
如图,在平面直角坐标系中,A(1,2),B(3,1),C(-2,-1). (1)在图中作出关于轴对称的. (2)写出点的坐标(直接写答案). A1 _____________,B1 ______________,C1 ______________
如图,OM、ON是两条公路,A、B是两个工厂,现欲在∠MON内部建一个仓库P,使其到两条公路距离相等且到两工厂距离相等,请你确定该仓库P的位置 (保留作图痕迹) .
计算:(1)(2)
阅读下面的材料: 在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行. 解答下面的问题: (1)求过点P(1,4)且与已知直线y=-2x-1平行的直线的函数表达式,并画出直线l的图象; (2)设直线l分别与y轴、x轴交于点A、B,如果直线:y=kx+t ( t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.
本题中的图象,是表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程中路程y(千米)随时间x(小时)变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题: (1)分别求出表示轮船和快艇行驶过程中路程y(千米)随时间x(小时)变化的函数关系式(不要求写出自变量的取值范围); (2)轮船和快艇在途中行驶的速度分别是多少? (3)快艇出发多长时间后追上轮船?