初中数学

如图1,在 ΔABC 中, ACB = 90 ° AC = BC ,点 D AB 边上一点(含端点 A B ) ,过点 B BE 垂直于射线 CD ,垂足为 E ,点 F 在射线 CD 上,且 EF = BE ,连接 AF BF

(1)求证: ΔABF ΔCBE

(2)如图2,连接 AE ,点 P M N 分别为线段 AC AE EF 的中点,连接 PM MN PN .求 PMN 的度数及 MN PM 的值;

(3)在(2)的条件下,若 BC = 2 ,直接写出 ΔPMN 面积的最大值.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

如图,先将矩形纸片 ABCD 沿 EF 折叠 ( AB 边与 DE CF 的异侧), AE CF 于点 G ;再将纸片折叠,使 CG AE 在同一条直线上,折痕为 GH .若 AEF = α ,纸片宽 AB = 2 cm ,则 HE =    cm

来源:2021年山东省威海市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在等腰 ΔADE 中, AE = DE ΔABC 是直角三角形, CAB = 90 ° ABC = 1 2 AED ,连接 CD BD ,点 F BD 的中点,连接 EF

(1)当 EAD = 45 ° ,点 B 在边 AE 上时,如图①所示,求证: EF = 1 2 CD

(2)当 EAD = 45 ° ,把 ΔABC 绕点 A 逆时针旋转,顶点 B 落在边 AD 上时,如图②所示,当 EAD = 60 ° ,点 B 在边 AE 上时,如图③所示,猜想图②、图③中线段 EF CD 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2021年黑龙江省龙东地区中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图1, ABCD 中, AD > AB ABC 为锐角.要在对角线 BD 上找点 N M ,使四边形 ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案 (    )

A.

甲、乙、丙都是

B.

只有甲、乙才是

C.

只有甲、丙才是

D.

只有乙、丙才是

来源:2021年河北省中考数学试卷
  • 更新:2021-08-01
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中,对角线 AC BD 交于点 O ,已知 OA = OC OB = OD ,过点 O EF BD ,分别交 AB DC 于点 E F ,连接 DE BF

(1)求证:四边形 DEBF 是菱形:

(2)设 AD / / EF AD + AB = 12 BD = 4 3 ,求 AF 的长.

来源:2021年广西玉林市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, ACB = CAD = 90 ° ,点 E BC 上, AE / / DC EF AB ,垂足为 F

(1)求证:四边形 AECD 是平行四边形;

(2)若 AE 平分 BAC BE = 5 cos B = 4 5 ,求 BF AD 的长.

来源:2021年北京市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

如图,在四边形 ABCD 中, A = C = 90 ° DE BF 分别平分 ADC ABC ,并交线段 AB CD 于点 E F (点 E B 不重合).在线段 BF 上取点 M N (点 M BN 之间),使 BM = 2 FN .当点 P 从点 D 匀速运动到点 E 时,点 Q 恰好从点 M 匀速运动到点 N .记 QN = x PD = y ,已知 y = - 6 5 x + 12 ,当 Q BF 中点时, y = 24 5

(1)判断 DE BF 的位置关系,并说明理由.

(2)求 DE BF 的长.

(3)若 AD = 6

①当 DP = DF 时,通过计算比较 BE BQ 的大小关系.

②连结 PQ ,当 PQ 所在直线经过四边形 ABCD 的一个顶点时,求所有满足条件的 x 的值.

来源:2020年浙江省温州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AC BD O 的两条直径,连接 AB BC OE AB 于点 E ,点 F 是半径 OC 的中点,连接 EF

(1)设 O 的半径为1,若 BAC = 30 ° ,求线段 EF 的长.

(2)连接 BF DF ,设 OB EF 交于点 P

①求证: PE = PF

②若 DF = EF ,求 BAC 的度数.

来源:2020年浙江省杭州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知, ΔABC 中, B = C P BC 边上一点,作 CPE = BPF ,分别交边 AC AB 于点 E F

(1)若 CPE = C (如图 1 ) ,求证: PE + PF = AB

(2)若 CPE C ,过点 B CBD = CPE ,交 CA (或 CA 的延长线)于点 D .试猜想:线段 PE PF BD 之间的数量关系,并就 CPE > C 情形(如图 2 ) 说明理由.

(3)若点 F A 重合(如图 3 ) C = 27 ° ,且 PA = AE

①求 CPE 的度数;

②设 PB = a PA = b AB = c ,试证明: b = a 2 c 2 c

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为        

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,四边形 ABCD 的边 AD x 轴上,点 C y 轴的负半轴上,直线 BC / / AD ,且 BC = 3 OD = 2 ,将经过 A B 两点的直线 l : y = - 2 x - 10 向右平移,平移后的直线与 x 轴交于点 E ,与直线 BC 交于点 F ,设 AE 的长为 t ( t 0 )

(1)四边形 ABCD 的面积为      

(2)设四边形 ABCD 被直线 l 扫过的面积(阴影部分)为 S ,请直接写出 S 关于 t 的函数解析式;

(3)当 t = 2 时,直线 EF 上有一动点 P ,作 PM 直线 BC 于点 M ,交 x 轴于点 N ,将 ΔPMF 沿直线 EF 折叠得到 ΔPTF ,探究:是否存在点 P ,使点 T 恰好落在坐标轴上?若存在,请求出点 P 的坐标;若不存在,请说明理由.

来源:2017年湖北省武汉市江汉油田中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是平行四边形, AD = AC AD AC E AB 的中点, F AC 延长线上一点.

(1)若 ED EF ,求证: ED = EF

(2)在(1)的条件下,若 DC 的延长线与 FB 交于点 P ,试判定四边形 ACPE 是否为平行四边形?并证明你的结论(请先补全图形,再解答);

(3)若 ED = EF ED EF 垂直吗?若垂直给出证明,若不垂直说明理由.

来源:2017年山东省泰安市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图1,在平面直角坐标系中, O 是坐标原点,抛物线 y = 3 12 x 2 3 3 x + 8 3 x 轴正半轴交于点 A ,与 y 轴交于点 B ,连接 AB ,点 M N 分别是 OA AB 的中点, Rt Δ CDE Rt Δ ABO ,且 ΔCDE 始终保持边 ED 经过点 M ,边 CD 经过点 N ,边 DE y 轴交于点 H ,边 CD y 轴交于点 G

(1)填空: OA 的长是  ABO 的度数是  度;

(2)如图2,当 DE / / AB ,连接 HN

①求证:四边形 AMHN 是平行四边形;

②判断点 D 是否在该抛物线的对称轴上,并说明理由;

(3)如图3,当边 CD 经过点 O 时,(此时点 O 与点 G 重合),过点 D DQ / / OB ,交 AB 延长线上于点 Q ,延长 ED 到点 K ,使 DK = DN ,过点 K KI / / OB ,在 KI 上取一点 P ,使得 PDK = 45 ° (点 P Q 在直线 ED 的同侧),连接 PQ ,请直接写出 PQ 的长.

来源:2017年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = - 1 4 x 2 - 1 2 x + 2 x 轴交于 A B 两点,与 y 轴交于点 C

(1)求点 A B C 的坐标;

(2)点 E 是此抛物线上的点,点 F 是其对称轴上的点,求以 A B E F 为顶点的平行四边形的面积;

(3)此抛物线的对称轴上是否存在点 M ,使得 ΔACM 是等腰三角形?若存在,请求出点 M 的坐标;若不存在,请说明理由.

来源:2016年山东省滨州市中考数学试卷
  • 更新:2021-05-14
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,抛物线 y = a x 2 + bx + 2 ( a 0 ) 经过点 A ( - 2 , - 4 ) 和点 C ( 2 , 0 ) ,与 y 轴交于点 D ,与 x 轴的另一交点为点 B

(1)求抛物线的解析式;

(2)如图1,连接 BD ,在抛物线上是否存在点 P ,使得 PBC = 2 BDO ?若存在,请求出点 P 的坐标;若不存在,请说明理由;

(3)如图2,连接 AC ,交 y 轴于点 E ,点 M 是线段 AD 上的动点(不与点 A ,点 D 重合),将 ΔCME 沿 ME 所在直线翻折,得到 ΔFME ,当 ΔFME ΔAME 重叠部分的面积是 ΔAMC 面积的 1 4 时,请直接写出线段 AM 的长.

来源:2020年辽宁省鞍山市中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

初中数学平行四边形的判定与性质试题