初中数学

已知:在 ΔABC 外分别以 AB AC 为边作 ΔAEB ΔAFC

(1)如图1, ΔAEB ΔAFC 分别是以 AB AC 为斜边的等腰直角三角形,连接 EF .以 EF 为直角边构造 Rt Δ EFG ,且 EF = FG ,连接 BG CG EC

求证:① ΔAEF ΔCGF

②四边形 BGCE 是平行四边形.

(2)小明受到图1的启发做了进一步探究:

如图2,在 ΔABC 外分别以 AB AC 为斜边作 Rt Δ AEB Rt Δ AFC ,并使 FAC = EAB = 30 ° ,取 BC 的中点 D ,连接 DE EF 后发现,两者间存在一定的数量关系且夹角度数一定,请你帮助小明求出 ED EF 的值及 DEF 的度数.

(3)小颖受到启发也做了探究:

如图3,在 ΔABC 外分别以 AB AC 为底边作等腰三角形 AEB 和等腰三角形 AFC ,并使 CAF + EAB = 90 ° ,取 BC 的中点 D ,连接 DE EF 后发现,当给定 EAB = α 时,两者间也存在一定的数量关系且夹角度数一定,若 AE = m AB = n ,请你帮助小颖用含 m n 的代数式直接写出 ED EF 的值,并用含 α 的代数式直接表示 DEF 的度数.

来源:2019年辽宁省丹东市中考数学试卷
  • 更新:2021-05-12
  • 题型:未知
  • 难度:未知

问题背景:如图1,等腰 ΔABC 中, AB = AC BAC = 120 ° ,作 AD BC 于点 D ,则 D BC 的中点, BAD = 1 2 BAC = 60 ° ,于是 BC AB = 2 BD AB = 3

迁移应用:如图2, ΔABC ΔADE 都是等腰三角形, BAC = DAE = 120 ° D E C 三点在同一条直线上,连接 BD

①求证: ΔADB ΔAEC

②请直接写出线段 AD BD CD 之间的等量关系式;

拓展延伸:如图3,在菱形 ABCD 中, ABC = 120 ° ,在 ABC 内作射线 BM ,作点 C 关于 BM 的对称点 E ,连接 AE 并延长交 BM 于点 F ,连接 CE CF

①证明 ΔCEF 是等边三角形;

②若 AE = 5 CE = 2 ,求 BF 的长.

来源:2017年四川省成都市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知: ΔABC 是等腰三角形, CA = CB 0 ° < ACB 90 ° .点 M 在边 AC 上,点 N 在边 BC 上(点 M 、点 N 不与所在线段端点重合), BN = AM ,连接 AN BM ,射线 AG / / BC ,延长 BM 交射线 AG 于点 D ,点 E 在直线 AN 上,且 AE = DE

(1)如图,当 ACB = 90 °

①求证: ΔBCM ΔACN

②求 BDE 的度数;

(2)当 ACB = α ,其它条件不变时, BDE 的度数是  ;(用含 α 的代数式表示)

(3)若 ΔABC 是等边三角形, AB = 3 3 ,点 N BC 边上的三等分点,直线 ED 与直线 BC 交于点 F ,请直接写出线段 CF 的长.

来源:2018年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC CG BA BA 的延长线于点 G

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 F ,一条直角边与 AC 重合,另一条直角边恰好经过点 B .通过观察、测量 BF CG 的长度,得到 BF = CG .请给予证明.

猜想论证:

(2)当三角尺沿 AC 方向移动到图2所示的位置时,一条直角边仍与 AC 边重合,另一条直角边交 BC 于点 D ,过点 D DE BA 垂足为 E .此时请你通过观察、测量 DE DF CG 的长度,猜想并写出 DE DF CG 之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿 AC 方向继续移动到图3所示的位置(点 F 在线段 AC 上,且点 F 与点 C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BAC = 90 ° AB = AC AD BC 于点 D

(1)如图1,点 E F AB AC 上,且 EDF = 90 ° .求证: BE = AF

(2)点 M N 分别在直线 AD AC 上,且 BMN = 90 °

①如图2,当点 M AD 的延长线上时,求证: AB + AN = 2 AM

②当点 M 在点 A D 之间,且 AMN = 30 ° 时,已知 AB = 2 ,直接写出线段 AM 的长.

来源:2018年辽宁省阜新市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

已知:在四边形 ABCD 中,对角线 AC BD 相交于点 E ,且 AC BD ,作 BF CD ,垂足为点 F BF AC 交于点 G BGE = ADE

(1)如图1,求证: AD = CD

(2)如图2, BH ΔABE 的中线,若 AE = 2 DE DE = EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 ΔADE 面积的2倍.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

阅读下面材料:

小明遇到这样一个问题:

如图1, ΔABC 中, ACB = 90 ° ,点 D AB 上,且 BAC = 2 DCB ,求证: AC = AD

小明发现,除了直接用角度计算的方法外,还可以用下面两种方法:

方法1:如图2,作 AE 平分 CAB ,与 CD 相交于点 E

方法2:如图3,作 DCF = DCB ,与 AB 相交于点 F

(1)根据阅读材料,任选一种方法,证明 AC = AD

用学过的知识或参考小明的方法,解决下面的问题:

(2)如图4, ΔABC 中,点 D AB 上,点 E BC 上,且 BDE = 2 ABC ,点 F BD 上,且 AFE = BAC ,延长 DC FE ,相交于点 G ,且 DGF = BDE

①在图中找出与 DEF 相等的角,并加以证明;

②若 AB = kDF ,猜想线段 DE DB 的数量关系,并证明你的猜想.

来源:2018年辽宁省大连市中考数学试卷
  • 更新:2021-05-10
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 7 . 5 AC = 9 S ΔABC = 81 4 .动点 P A 点出发,沿 AB 方向以每秒5个单位长度的速度向 B 点匀速运动,动点 Q C 点同时出发,以相同的速度沿 CA 方向向 A 点匀速运动,当点 P 运动到 B 点时, P Q 两点同时停止运动,以 PQ 为边作正 ΔPQM ( P Q M 按逆时针排序),以 QC 为边在 AC 上方作正 ΔQCN ,设点 P 运动时间为 t 秒.

(1)求 cos A 的值;

(2)当 ΔPQM ΔQCN 的面积满足 S ΔPQM = 9 5 S ΔQCN 时,求 t 的值;

(3)当 t 为何值时, ΔPQM 的某个顶点 ( Q 点除外)落在 ΔQCN 的边上.

来源:2018年四川省攀枝花市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

(1)阅读理解:

如图①,在 ΔABC 中,若 AB = 10 AC = 6 ,求 BC 边上的中线 AD 的取值范围.

解决此问题可以用如下方法:延长 AD 到点 E 使 DE = AD ,再连接 BE (或将 ΔACD 绕着点 D 逆时针旋转 180 ° 得到 ΔEBD ) ,把 AB AC 2 AD 集中在 ΔABE 中,利用三角形三边的关系即可判断.

中线 AD 的取值范围是  

(2)问题解决:

如图②,在 ΔABC 中, D BC 边上的中点, DE DF 于点 D DE AB 于点 E DF AC 于点 F ,连接 EF ,求证: BE + CF > EF

(3)问题拓展:

如图③,在四边形 ABCD 中, B + D = 180 ° CB = CD BCD = 140 ° ,以 C 为顶点作一个 70 ° 角,角的两边分别交 AB AD E F 两点,连接 EF ,探索线段 BE DF EF 之间的数量关系,并加以证明.

来源:2016年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, BC > AC ,点 E BC 上, CE = CA ,点 D AB 上,连接 DE ACB + ADE = 180 ° ,作 CH AB ,垂足为 H

(1)如图 a ,当 ACB = 90 ° 时,连接 CD ,过点 C CF CD BA 的延长线于点 F

①求证: FA = DE

②请猜想三条线段 DE AD CH 之间的数量关系,直接写出结论;

(2)如图 b ,当 ACB = 120 ° 时,三条线段 DE AD CH 之间存在怎样的数量关系?请证明你的结论.

来源:2016年辽宁省抚顺市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = 4 2 B = 45 ° C = 60 °

(1)求 BC 边上的高线长.

(2)点 E 为线段 AB 的中点,点 F 在边 AC 上,连结 EF ,沿 EF ΔAEF 折叠得到 ΔPEF

①如图2,当点 P 落在 BC 上时,求 AEP 的度数.

②如图3,连结 AP ,当 PF AC 时,求 AP 的长.

来源:2020年浙江省金华市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知 Rt Δ ABC 中, ACB = 90 ° ,点 D E 分别在 BC AC 边上,连接 BE AD 交于点 P ,设 AC = kBD CD = kAE k 为常数,试探究 APE 的度数:

(1)如图1,若 k = 1 ,则 APE 的度数为  

(2)如图2,若 k = 3 ,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出 APE 的度数.

(3)如图3,若 k = 3 ,且 D E 分别在 CB CA 的延长线上,(2)中的结论是否成立,请说明理由.

来源:2018年四川省乐山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC ABC = α ,过点 A 作直线 MN ,使 MN / / BC ,点 D 在直线 MN 上,作射线 BD ,将射线 BD 绕点 B 顺时针旋转角 α 后交直线 AC 于点 E

(1)如图①,当 α = 60 ° ,且点 D 在射线 AN 上时,直接写出线段 AB AD AE 的数量关系.

(2)如图②,当 α = 45 ° ,且点 D 在射线 AN 上时,直写出线段 AB AD AE 的数量关系,并说明理由.

(3)当 α = 30 ° 时,若点 D 在射线 AM 上, ABE = 15 ° AD = 3 1 ,请直接写出线段 AE 的长度.

来源:2017年辽宁省本溪市中考数学试卷
  • 更新:2021-05-13
  • 题型:未知
  • 难度:未知

如图,等边△ ABC中, AB=6,点 DBC上, BD=4,点 E为边 AC上一动点(不与点 C重合),△ CDE关于 DE的轴对称图形为△ FDE

(1)当点 FAC上时,求证: DFAB

(2)设△ ACD的面积为 S 1,△ ABF的面积为 S 2,记 SS 1S 2S是否存在最大值?若存在,求出 S的最大值;若不存在,请说明理由;

(3)当 BFE三点共线时.求 AE的长.

来源:2019年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

初中数学三角形综合题解答题