初中数学

如图,已知 O 是等边三角形 ABC 的外接圆,点 D 在圆上,在 CD 的延长线上有一点 F ,使 DF = DA AE / / BC CF E

(1)求证: EA O 的切线;

(2)求证: BD = CF

来源:2018年湖南省常德市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

问题背景:已知 EDF 的顶点 D ΔABC 的边 AB 所在直线上(不与 A B 重合), DE AC 所在直线于点 M DF BC 所在直线于点 N ,记 ΔADM 的面积为 S 1 ΔBND 的面积为 S 2

(1)初步尝试:如图①,当 ΔABC 是等边三角形, AB = 6 EDF = A ,且 DE / / BC AD = 2 时,则 S 1 · S 2 =   

(2)类比探究:在(1)的条件下,先将点 D 沿 AB 平移,使 AD = 4 ,再将 EDF 绕点 D 旋转至如图②所示位置,求 S 1 · S 2 的值;

(3)延伸拓展:当 ΔABC 是等腰三角形时,设 B = A = EDF = α

(Ⅰ)如图③,当点 D 在线段 AB 上运动时,设 AD = a BD = b ,求 S 1 · S 2 的表达式(结果用 a b α 的三角函数表示).

(Ⅱ)如图④,当点 D BA 的延长线上运动时,设 AD = a BD = b ,直接写出 S 1 · S 2 的表达式,不必写出解答过程.

来源:2017年湖南省岳阳市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是正方形, ΔEBC 是等边三角形.

(1)求证: ΔABE ΔDCE

(2)求 AED 的度数.

来源:2017年湖南省怀化市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

已知线段 AB 直线 l 于点 B ,点 D 在直线 l 上,分别以 AB AD 为边作等边三角形 ABC 和等边三角形 ADE ,直线 CE 交直线 l 于点 F

(1)当点 F 在线段 BD 上时,如图①,求证: DF = CE CF

(2)当点 F 在线段 BD 的延长线上时,如图②;当点 F 在线段 DB 的延长线上时,如图③,请分别写出线段 DF CE CF 之间的数量关系,在图②、图③中选一个进行证明;

(3)在(1)、(2)的条件下,若 BD = 2 BF EF = 6 ,则 CF =   

来源:2017年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-04-26
  • 题型:未知
  • 难度:未知

如图,点 M N 分别在正三角形 ABC BC CA 边上,且 BM = CN AM BN 交于点 Q .求证: BQM = 60 °

来源:2016年四川省广元市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

如图,点 D 是等边三角形 ABC 外接圆上一点. M BD 上一点,且满足 DM = DC ,点 E AC BD 的交点.

(1)求证: CM / / AD

(2)如果 AD = 1 CM = 2 .求线段 BD 的长及 ΔBCE 的面积.

来源:2016年四川省德阳市中考数学试卷
  • 更新:2021-04-23
  • 题型:未知
  • 难度:未知

已知AB是半径为1的圆O直径,C是圆上一点,DBC延长线上一点,过点D的直线交ACE点,且△AEF为等边三角形

(1)求证:△DFB是等腰三角形;

(2)若 DA 7 AF ,求证: CF AB

来源:2016年湖南省株洲市中考数学试卷
  • 更新:2021-04-15
  • 题型:未知
  • 难度:未知

如图,等边△ ABC中, AB=6,点 DBC上, BD=4,点 E为边 AC上一动点(不与点 C重合),△ CDE关于 DE的轴对称图形为△ FDE

(1)当点 FAC上时,求证: DFAB

(2)设△ ACD的面积为 S 1,△ ABF的面积为 S 2,记 SS 1S 2S是否存在最大值?若存在,求出 S的最大值;若不存在,请说明理由;

(3)当 BFE三点共线时.求 AE的长.

来源:2019年广东省广州市中考数学试卷
  • 更新:2021-04-13
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等边三角形, AB = 4 cm ,动点 P 从点 A 出发,以 2 cm / s 的速度沿 AB 向点 B 匀速运动,过点 P PQ AB ,交折线 AC - CB 于点 Q ,以 PQ 为边作等边三角形 PQD ,使点 A D PQ 异侧.设点 P 的运动时间为 x ( s ) ( 0 < x < 2 ) ΔPQD ΔABC 重叠部分图形的面积为 y ( c m 2 )

(1) AP 的长为     cm (用含 x 的代数式表示).

(2)当点 D 落在边 BC 上时,求 x 的值.

(3)求 y 关于 x 的函数解析式,并写出自变量 x 的取值范围.

来源:2020年吉林省中考数学试卷
  • 更新:2021-01-15
  • 题型:未知
  • 难度:未知

如图,正方形 ABCD 的边长为6, M AB 的中点, ΔMBE 为等边三角形,过点 E ME 的垂线分别与边 AD BC 相交于点 F G ,点 P Q 分别在线段 EF BC 上运动,且满足 PMQ = 60 ° ,连接 PQ

(1)求证: ΔMEP ΔMBQ

(2)当点 Q 在线段 GC 上时,试判断 PF + GQ 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.

(3)设 QMB = α ,点 B 关于 QM 的对称点为 B ' ,若点 B ' 落在 ΔMPQ 的内部,试写出 α 的范围,并说明理由.

来源:2020年江苏省泰州市中考数学试卷
  • 更新:2021-01-08
  • 题型:未知
  • 难度:未知

如图1,都是等边三角形.

探究发现

(1)是否全等?若全等,加以证明;若不全等,请说明理由.

拓展运用

(2)若三点不在一条直线上,,求的长.

(3)若三点在一条直线上(如图,且的边长分别为1和2,求的面积及的长.

来源:2020年贵州省黔东南州中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

如图, O 为等边 ΔABC 的外接圆,半径为2,点 D 在劣弧 AB ̂ 上运动(不与点 A B 重合),连接 DA DB DC

(1)求证: DC ADB 的平分线;

(2)四边形 ADBC 的面积 S 是线段 DC 的长 x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;

(3)若点 M N 分别在线段 CA CB 上运动(不含端点),经过探究发现,点 D 运动到每一个确定的位置, ΔDMN 的周长有最小值 t ,随着点 D 的运动, t 的值会发生变化,求所有 t 值中的最大值.

来源:2020年广东省广州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图1,中,内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.

(1)填空:  (用含的代数式表示);

(2)如图2,若,请补全图形,再过点于点,然后探究线段之间的数量关系,并证明你的结论;

(3)若,且点满足,直接写出点的距离.

来源:2019年湖北省十堰市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,的直径,点上一点,点是半径上一动点(不与重合),过点作射线,分别交弦两点,在射线上取点,使

(1)求证:的切线;

(2)当点的中点时,

①若,判断以为顶点的四边形是什么特殊四边形,并说明理由;

②若,且,求的长.

来源:2019年湖北省荆州市中考数学试卷
  • 更新:2021-01-01
  • 题型:未知
  • 难度:未知

如图,在直角坐标系中,已知点,等边三角形的顶点在反比例函数的图象上.

(1)求反比例函数的表达式.

(2)把向右平移个单位长度,对应得到△当这个函数图象经过△一边的中点时,求的值.

来源:2019年浙江省舟山市中考数学试卷
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

初中数学等边三角形的性质解答题