如图,正方形 ABCD 的边长为6, M 为 AB 的中点, ΔMBE 为等边三角形,过点 E 作 ME 的垂线分别与边 AD 、 BC 相交于点 F 、 G ,点 P 、 Q 分别在线段 EF 、 BC 上运动,且满足 ∠ PMQ = 60 ° ,连接 PQ .
(1)求证: ΔMEP ≅ ΔMBQ .
(2)当点 Q 在线段 GC 上时,试判断 PF + GQ 的值是否变化?如果不变,求出这个值,如果变化,请说明理由.
(3)设 ∠ QMB = α ,点 B 关于 QM 的对称点为 B ' ,若点 B ' 落在 ΔMPQ 的内部,试写出 α 的范围,并说明理由.
如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2). ⑴求直线y=ax+b的解析式; ⑵设直线y=ax+b与x轴交于点M,求AM的长.
一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE. ⑴说明四边形ACEF是平行四边形; ⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-l,-2和-3.小强从A布袋中随机取出一个小球,记录其标有的数字为a,再从B布袋中随机取出一个小球,记录其标有的数字为b,这样就确定点Q的一个坐标为(a,b). ⑴用列表或画树状图的方法写出点Q的所有可能坐标; ⑵求点Q落在直线y=x-3上的概率.
先化简,再求值:,其中a=2-