初中数学

以正方形 ABCD 的边 AD 作等边 ΔADE ,则 BEC 的度数是          

来源:2018年湖北省武汉市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

问题背景:已知 EDF 的顶点 D ΔABC 的边 AB 所在直线上(不与 A B 重合), DE AC 所在直线于点 M DF BC 所在直线于点 N ,记 ΔADM 的面积为 S 1 ΔBND 的面积为 S 2

(1)初步尝试:如图①,当 ΔABC 是等边三角形, AB = 6 EDF = A ,且 DE / / BC AD = 2 时,则 S 1 · S 2 =   

(2)类比探究:在(1)的条件下,先将点 D 沿 AB 平移,使 AD = 4 ,再将 EDF 绕点 D 旋转至如图②所示位置,求 S 1 · S 2 的值;

(3)延伸拓展:当 ΔABC 是等腰三角形时,设 B = A = EDF = α

(Ⅰ)如图③,当点 D 在线段 AB 上运动时,设 AD = a BD = b ,求 S 1 · S 2 的表达式(结果用 a b α 的三角函数表示).

(Ⅱ)如图④,当点 D BA 的延长线上运动时,设 AD = a BD = b ,直接写出 S 1 · S 2 的表达式,不必写出解答过程.

来源:2017年湖南省岳阳市中考数学试卷
  • 更新:2021-05-06
  • 题型:未知
  • 难度:未知

如图, ΔABC 为等边三角形, AB = 2 .若 P ΔABC 内一动点,且满足 PAB = ACP ,则线段 PB 长度的最小值为  

来源:2017年山东省威海市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中, ABC = 120 ° AB = 10 cm ,点 P 是这个菱形内部或边上的一点.若以 P B C 为顶点的三角形是等腰三角形,则 P A ( P A 两点不重合)两点间的最短距离为   cm

来源:2017年湖南省怀化市中考数学试卷
  • 更新:2021-05-07
  • 题型:未知
  • 难度:未知

【发现】如图①,已知等边 ΔABC ,将直角三角板的 60 ° 角顶点 D 任意放在 BC 边上(点 D 不与点 B C 重合),使两边分别交线段 AB AC 于点 E F

(1)若 AB = 6 AE = 4 BD = 2 ,则 CF =   

(2)求证: ΔEBD ΔDCF

【思考】若将图①中的三角板的顶点 D BC 边上移动,保持三角板与边 AB AC 的两个交点 E F 都存在,连接 EF ,如图②所示,问:点 D 是否存在某一位置,使 ED 平分 BEF FD 平分 CFE ?若存在,求出 BD BC 的值;若不存在,请说明理由.

【探索】如图③,在等腰 ΔABC 中, AB = AC ,点 O BC 边的中点,将三角形透明纸板的一个顶点放在点 O 处(其中 MON = B ) ,使两条边分别交边 AB AC 于点 E F (点 E F 均不与 ΔABC 的顶点重合),连接 EF .设 B = α ,则 ΔAEF ΔABC 的周长之比为  (用含 α 的表达式表示).

来源:2018年江苏省盐城市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图所示,正方形 ABCD 的边长为6, ΔABE 是等边三角形,点 E 在正方形 ABCD 内,在对角线 AC 上有一点 P ,使 PD + PE 的和最小,则这个最小值为  

来源:2017年贵州省安顺市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = 6 AC = BC = 5 ,将 ΔABC 绕点 A 按顺时针方向旋转,得到 ΔADE ,旋转角为 α ( 0 ° < α < 180 ° ) ,点 B 的对应点为点 D ,点 C 的对应点为点 E ,连接 BD BE

(1)如图,当 α = 60 ° 时,延长 BE AD 于点 F

①求证: ΔABD 是等边三角形;

②求证: BF AD AF = DF

③请直接写出 BE 的长;

(2)在旋转过程中,过点 D DG 垂直于直线 AB ,垂足为点 G ,连接 CE ,当 DAG = ACB ,且线段 DG 与线段 AE 无公共点时,请直接写出 BE + CE 的值.

温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.

来源:2016年辽宁省沈阳市中考数学试卷
  • 更新:2021-05-15
  • 题型:未知
  • 难度:未知

小颖同学在手工制作中,把一个边长为 12 cm 的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为 (    )

A. 2 3 cm B. 4 3 cm C. 6 3 cm D. 8 3 cm

来源:2016年贵州省贵阳市中考数学试卷
  • 更新:2021-04-27
  • 题型:未知
  • 难度:未知

如图, P ( m , m ) 是反比例函数 y = 9 x 在第一象限内的图象上一点,以 P 为顶点作等边 ΔPAB ,使 AB 落在 x 轴上,则 ΔPOB 的面积为 (    )

A. 9 2 B. 3 3 C. 9 + 12 3 4 D. 9 + 3 3 2

来源:2017年湖北省仙桃市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知边长为2的等边三角形 ABC 中,分别以点 A C 为圆心, m 为半径作弧,两弧交于点 D ,连结 BD .若 BD 的长为 2 3 ,则 m 的值为  

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,面积为1的等边三角形 ABC 中, D E F 分别是 AB BC CA 的中点,则 ΔDEF 的面积是 (    )

A.1B. 1 2 C. 1 3 D. 1 4

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等边三角形, ΔABD 是等腰直角三角形, BAD = 90 ° AE BD 于点 E ,连 CD 分别交 AE AB 于点 F G ,过点 A AH CD BD 于点 H .则下列结论:① ADC = 15 ° ;② AF = AG ;③ AH = DF ;④ ΔAFG ΔCBG ;⑤ AF = ( 3 - 1 ) EF .其中正确结论的个数为 (    )

A.5B.4C.3D.2

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图,等边三角形 ABC 的边长为4,点 O ΔABC 的中心, FOG = 120 ° ,绕点 O 旋转 FOG ,分别交线段 AB BC D E 两点,连接 DE ,给出下列四个结论:① OD = OE ;② S ΔODE = S ΔBDE ;③四边形 ODBE 的面积始终等于 4 3 3 ;④ ΔBDE 周长的最小值为6.上述结论中正确的个数是 (    )

A.1B.2C.3D.4

来源:2018年山东省德州市中考数学试卷
  • 更新:2021-05-16
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,点 E F 分别在 BC CD 上, AE = AF AC EF 相交于点 G .下列结论:① AC 垂直平分 EF ;② BE + DF = EF ;③当 DAF = 15 ° 时, ΔAEF 为等边三角形;④当 EAF = 60 ° 时, S ΔABE = 1 2 S ΔCEF .其中正确的是 (    )

A.①③B.②④C.①③④D.②③④

来源:2018年辽宁省鞍山市中考数学试卷
  • 更新:2021-05-09
  • 题型:未知
  • 难度:未知

初中数学等边三角形的性质试题