初中数学

已知:如图,在平面直角坐标系 xOy 中,等边 ΔAOB 的边长为6,点 C 在边 OA 上,点 D 在边 AB 上,且 OC = 3 BD ,反比例函数 y = k x ( k 0 ) 的图象恰好经过点 C 和点 D ,则 k 的值为 (    )

A. 81 3 25 B. 81 3 16 C. 81 3 5 D. 81 3 4

来源:2017年湖北省荆门市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,等边三角形 ABC 边长是定值,点 O 是它的外心,过点 O 任意作一条直线分别交 AB BC 于点 D E .将 ΔBDE 沿直线 DE 折叠,得到△ B ' DE ,若 B ' D B ' E 分别交 AC 于点 F G ,连接 OF OG ,则下列判断错误的是 (    )

A. ΔADF ΔCGE

B.△ B ' FG 的周长是一个定值

C.四边形 FOEC 的面积是一个定值

D.四边形 OG B ' F 的面积是一个定值

来源:2018年浙江省台州市中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔCDE 均为等边三角形,连接 BD AE 交于点 O BC AE 交于点 P .求证: AOB = 60 °

来源:2017年湖北省恩施州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图,等边三角形纸片 ABC 的边长为6, E F 是边 BC 上的三等分点.分别过点 E F 沿着平行于 BA CA 方向各剪一刀,则剪下的 ΔDEF 的周长是  

来源:2020年浙江省台州市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 P Q 分别是等边 ΔABC AB BC 上的动点(端点除外),点 P 、点 Q 以相同的速度,同时从点 A 、点 B 出发.

(1)如图1,连接 AQ CP .求证: ΔABQ ΔCAP

(2)如图1,当点 P Q 分别在 AB BC 边上运动时, AQ CP 相交于点 M QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;

(3)如图2,当点 P Q AB BC 的延长线上运动时,直线 AQ CP 相交于 M QMC 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.

来源:2020年四川省凉山州中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图①,在四边形 ABCD 中, AC BD 于点 E AB = AC = BD ,点 M BC 中点, N 为线段 AM 上的点,且 MB = MN

(1)求证: BN 平分 ABE

(2)若 BD = 1 ,连接 DN ,当四边形 DNBC 为平行四边形时,求线段 BC 的长;

(3)如图②,若点 F AB 的中点,连接 FN FM ,求证: ΔMFN ΔBDC

来源:2018年四川省眉山市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = 4 C = 60 ° A > B ,则 BC 的长的取值范围是         

来源:2019年江苏省南京市中考数学试卷
  • 更新:2021-05-21
  • 题型:未知
  • 难度:未知

如图, ΔABC ΔDEF 都是边长为2的等边三角形,它们的边 BC EF 在同一条直线 l 上,点 C E 重合.现将 ΔABC 沿着直线 l 向右移动,直至点 B F 重合时停止移动.在此过程中,设点 C 移动的距离为 x ,两个三角形重叠部分的面积为 y ,则 y x 变化的函数图象大致为 (    )

A.

B.

C.

D.

来源:2020年安徽省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,等边 ΔABC 的边长为2, A 的半径为1, D BC 上的动点, DE A 相切于 E DE 的最小值是 (    )

A.1B. 2 C. 3 D.2

来源:2018年广西河池市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,等边 ΔOAB 的边长为2,则点 B 的坐标为 (    )

A. ( 1 , 1 ) B. ( 3 1 ) C. ( 3 3 ) D. ( 1 , 3 )

来源:2017年四川省南充市中考数学试卷
  • 更新:2021-05-23
  • 题型:未知
  • 难度:未知

如图,菱形 ABCD 中, B = 60 ° ,点 P 从点 B 出发,沿折线 BC - CD 方向移动,移动到点 D 停止.在 ΔABP 形状的变化过程中,依次出现的特殊三角形是 (    )

A.

直角三角形 等边三角形 等腰三角形 直角三角形

B.

直角三角形 等腰三角形 直角三角形 等边三角形

C.

直角三角形 等边三角形 直角三角形 等腰三角形

D.

等腰三角形 等边三角形 直角三角形 等腰三角形

来源:2021年浙江省绍兴市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

如图,已知边长为2的等边三角形 ABC 中,分别以点 A C 为圆心, m 为半径作弧,两弧交于点 D ,连结 BD .若 BD 的长为 2 3 ,则 m 的值为  

来源:2020年浙江省绍兴市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,面积为1的等边三角形 ABC 中, D E F 分别是 AB BC CA 的中点,则 ΔDEF 的面积是 (    )

A.1B. 1 2 C. 1 3 D. 1 4

来源:2020年福建省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 是等边三角形, ΔABD 是等腰直角三角形, BAD = 90 ° AE BD 于点 E ,连 CD 分别交 AE AB 于点 F G ,过点 A AH CD BD 于点 H .则下列结论:① ADC = 15 ° ;② AF = AG ;③ AH = DF ;④ ΔAFG ΔCBG ;⑤ AF = ( 3 - 1 ) EF .其中正确结论的个数为 (    )

A.5B.4C.3D.2

来源:2018年湖北省孝感市中考数学试卷
  • 更新:2021-05-22
  • 题型:未知
  • 难度:未知

如图1,2,3分别以 ΔABC AB AC 为边向 ΔABC 外作正三角形(等边三角形)、正四边形(正方形)、正五边形, BE CD 相交于点 O

(1)在图1中,求证: ΔABE ΔADC

(2)由(1)证得 ΔABE ΔADC ,由此可推得在图1中 BOC = 120 ° ,请你探索在图2中, BOC 的度数,并说明理由或写出证明过程.

(3)填空:在上述(1)(2)的基础上可得在图3中 BOC =        (填写度数).

(4)由此推广到一般情形(如图4),分别以 ΔABC AB AC 为边向 ΔABC 外作正 n 边形, BE CD 仍相交于点 O ,猜想得 BOC 的度数为      (用含 n 的式子表示).

来源:2016年青海省中考数学试卷
  • 更新:2021-05-18
  • 题型:未知
  • 难度:未知

初中数学等边三角形的性质试题