如图,四边形是正方形,是等腰直角三角形,点在上,且,,垂足为点.
(1)试判断与是否相等?并给出证明;
(2)若点为的中点,与垂直吗?若垂直,给出证明;若不垂直,说明理由.
在平面直角坐标系中,已知,动点在的图象上运动(不与重合),连接.过点作,交轴于点,连接.
(1)求线段长度的取值范围;
(2)试问:点运动的过程中,是否为定值?如果是,求出该值;如果不是,请说明理由.
(3)当为等腰三角形时,求点的坐标.
如图,直角 中, , 在 上,连接 ,作 分别交 于 , 于 .
(1)如图1,若 ,求证: ;
(2)如图2,若 ,取 的中点 ,连接 交 于 ,求证:① ;② .
如图,抛物线与轴交于点,点,且.
(1)求抛物线的解析式;
(2)点在抛物线上,且,求点的坐标;
(3)抛物线上两点,,点的横坐标为,点的横坐标为.点是抛物线上,之间的动点,过点作轴的平行线交于点.
①求的最大值;
②点关于点的对称点为,当为何值时,四边形为矩形.
如图1,在平面直角坐标系中,抛物线经过点和点.
(1)求抛物线的解析式及顶点的坐标;
(2)点是抛物线上、之间的一点,过点作轴于点,轴,交抛物线于点,过点作轴于点,当矩形的周长最大时,求点的横坐标;
(3)如图2,连接、,点在线段上(不与、重合),作,交线段于点,是否存在这样点,使得为等腰三角形?若存在,求出的长;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线与轴交于、两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.
(1)求直线的解析式;
(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是上的一点,点是上的一点,求的最小值;
(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线,经过点,的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.
如图1,在平面直角坐标系中,抛物线 与 轴交于 , 两点(点 在点 左侧),与 轴交于点 ,抛物线的顶点为点 .
(1)判断 的形状,并说明理由;
(2)经过 , 两点的直线交抛物线的对称轴于点 ,点 为直线 上方抛物线上的一动点,当 的面积最大时, 从点 出发,先沿适当的路径运动到抛物线的对称轴上点 处,再沿垂直于抛物线对称轴的方向运动到 轴上的点 处,最后沿适当的路径运动到点 处停止.当点 的运动路径最短时,求点 的坐标及点 经过的最短路径的长;
(3)如图2,平移抛物线,使抛物线的顶点 在射线 上移动,点 平移后的对应点为点 ,点 的对应点为点 ,将 绕点 顺时针旋转至△ 的位置,点 , 的对应点分别为点 , ,且点 恰好落在 上,连接 , ,△ 是否能为等腰三角形?若能,请求出所有符合条件的点 的坐标;若不能,请说明理由.
在 中, , 是边 上一动点,连接 ,将 绕点 逆时针旋转至 的位置,使得 .
(1)如图1,当 时,连接 ,交 于点 .若 平分 , ,求 的长;
(2)如图2,连接 ,取 的中点 ,连接 .猜想 与 存在的数量关系,并证明你的猜想;
(3)如图3,在(2)的条件下,连接 , .若 ,当 , 时,请直接写出 的值.
如图,在 中, ,以 为直径的 与 相交于点 , ,垂足为 .
(1)求证: 是 的切线;
(2)若弦 垂直于 ,垂足为 , , ,求 的半径;
(3)在(2)的条件下,当 时,求线段 的长.
如图, 中, , 是 的外接圆, 的延长线交边 于点 .
[小题1]求证: ;
[小题2]当 是等腰三角形时,求 的大小;
[小题3]当 , 时,求边 的长.
如图,在平行四边形中,点是的中点,点是边上的点,,平行四边形的面积为,由、、三点确定的圆的周长为.
(1)若的面积为30,直接写出的值;
(2)求证:平分;
(3)若,,,求的值.
在等腰 中, , 是直角三角形, , ,连接 、 ,点 是 的中点,连接 .
(1)当 ,点 在边 上时,如图①所示,求证: ;
(2)当 ,把 绕点 逆时针旋转,顶点 落在边 上时,如图②所示,当 ,点 在边 上时,如图③所示,猜想图②、图③中线段 和 又有怎样的数量关系?请直接写出你的猜想,不需证明.
如图,抛物线交轴于、两点,交轴于点,顶点的坐标为,对称轴交轴于点,直线交轴于点,交轴于点,交抛物线的对称轴于点.
(1)求出,,的值.
(2)点为抛物线对称轴上一个动点,若是以为腰的等腰三角形时,请求出点的坐标.
(3)点为抛物线上一个动点,当点关于直线的对称点恰好落在轴上时,请直接写出此时点的坐标.
已知,在 中, , , , 是 边上的一个动点,将 沿 所在直线折叠,使点 落在点 处.
(1)如图1,若点 是 中点,连接 .
①写出 , 的长;
②求证:四边形 是平行四边形.
(2)如图2,若 ,过点 作 交 的延长线于点 ,求 的长.