如图,在中,是边上的中线,是边上一点,过点作交的延长线于点.
(1)求证:.
(2)当,,时,求的长.
如图,正方形的边长为2,为的中点,是延长线上的一点,连接交于点,.
(1)求的值;
(2)如图1,连接,在线段上取一点,使,连接,求证:;
(3)如图2,过点作于点,在线段上取一点,使,连接,.将绕点旋转,使点旋转后的对应点落在边上.请判断点旋转后的对应点是否落在线段上,并说明理由.
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形的各条边都相等.
①如图1,若,求证:五边形是正五边形;
②如图2,若,请判断五边形是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”
如图3,已知凸六边形的各条边都相等.
①若,则六边形是正六边形;
②若,则六边形是正六边形.
如图,矩形中,,,点,分别在边,上,点,分别在边,上,,交于点,记.
(1)若的值为1,当时,求的值.
(2)若的值为,求的最大值和最小值.
(3)若的值为3,当点是矩形的顶点,,时,求的值.
如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂可绕点旋转,摆动臂可绕点旋转,,.
(1)在旋转过程中,
①当,,三点在同一直线上时,求的长.
②当,,三点为同一直角三角形的顶点时,求的长.
(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.
如图,在中,,,,平分交于点,过点作交于点,点是线段上的动点,连结并延长分别交,于点、.
(1)求的长.
(2)若点是线段的中点,求的值.
(3)请问当的长满足什么条件时,在线段上恰好只有一点,使得?
如图,矩形的顶点,分别在菱形的边,上,顶点,在菱形的对角线上.
(1)求证:;
(2)若为中点,,求菱形的周长.
如图,在等腰中,,,点,分别在边,上,将线段绕点按逆时针方向旋转得到.
(1)如图1,若,点与点重合,与相交于点.求证:.
(2)已知点为的中点.
①如图2,若,,求的长.
②若,是否存在点,使得是直角三角形?若存在,求的长;若不存在,试说明理由.
如图1,已知在平面直角坐标系中,四边形是矩形,点,分别在轴和轴的正半轴上,连结,,,是的中点.
(1)求的长和点的坐标;
(2)如图2,是线段上的点,,点是线段上的一个动点,经过,,三点的抛物线交轴的正半轴于点,连结交于点.
①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;
②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.
在中,平分交于点.
(1)如图1,若,,求的面积;
(2)如图2,过点作,交的延长线于点,分别交,于点,,且.求证:.
如图,在平行四边形中,点在边上,连接,,垂足为,交于点,,垂足为,,垂足为,交于点,点是上一点,连接.
(1)若,,,求的面积.
(2)若,,求证:.