如图,为的直径,四边形内接于,对角线,交于点,的切线交的延长线于点,切点为,且.
(1)求证:;
(2)若,,求的值.
如图,在正方形中,,点在边上,连接,作于点,于点,连接、,设,,.
(1)求证:;
(2)求证:;
(3)若点从点沿边运动至点停止,求点,所经过的路径与边围成的图形的面积.
如图①,在中,,,点、分别在、边上,,连接、、,点、、分别是、、的中点,连接、、.
(1)与的数量关系是 .
(2)将绕点逆时针旋转到图②和图③的位置,判断与有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.
在等腰中,,点,在射线上,,过点作,交射线于点.请答案下列问题:
(1)当点在线段上,是的角平分线时,如图①,求证:;(提示:延长,交于点.
(2)当点在线段的延长线上,是的角平分线时,如图②;当点在线段的延长线上,是的外角平分线时,如图③,请直接写出线段,,之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若,则 .
如图,在平面直角坐标系中,四边形的边在轴上,在轴上.为坐标原点,,线段,的长分别是方程的两个根,.
(1)求点,的坐标;
(2)为上一点,为上一点,,将翻折,使点落在上的点处,双曲线的一个分支过点.求的值;
(3)在(2)的条件下,为坐标轴上一点,在平面内是否存在点,使以,,,为顶点四边形为矩形?若存在,请直接写出点的坐标;若不存在,请说明理由.
中,点在直线上.点在平面内,点在的延长线上,,,;
(1)如图①,求证;
(2)如图②、图③,请分别写出线段,,之间的数量关系,不需要证明;
(3)若,,,则 .
已知抛物线经过点和点,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出顶点的坐标;
(2)如图,点,分别在线段,上(点不与点,重合),且,,直接写出线段的长.
如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.
(1)求证:四边形为平行四边形;
(2)若,,且,求的长.
如图,点,,,在一条直线上,,,.
(1)求证:;
(2)连接,求证:四边形是平行四边形.
(1)如图(1),已知与交于点,,.求证:.
(2)如图(2),已知的延长线与交于点,,.探究与的数量关系,并说明理由.
如图,已知抛物线过点,交轴于点和点(点在点的左侧),抛物线的顶点为,对称轴交轴于点,连接.
(1)直接写出的值,点的坐标和抛物线对称轴的表达式;
(2)若点是抛物线对称轴上的点,当是等腰三角形时,求点的坐标;
(3)点是抛物线上的动点,连接,,将沿所在的直线对折,点落在坐标平面内的点处.求当点恰好落在直线上时点的横坐标.
如图所示,拋物线与轴交于、两点,与轴交于点,且点的坐标为,点的坐标为,对称轴为直线.点是抛物线上一个动点,设点的横坐标为,连接,,,.
(1)求抛物线的函数表达式;
(2)当的面积等于的面积的时,求的值;
(3)在(2)的条件下,若点是轴上一动点,点是抛物线上一动点,试判断是否存在这样的点,使得以点,,,为顶点的四边形是平行四边形.若存在,请直接写出点的坐标;若不存在,请说明理由.
如图,点,分别在正方形的边,上,且.把绕点顺时针旋转得到.
(1)求证:.
(2)若,,求正方形的边长.
背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点 、 、 在同一条直线上),发现 且 .
小组讨论后,提出了下列三个问题,请你帮助解答:
(1)将正方形 绕点 按逆时针方向旋转(如图 ,还能得到 吗?若能,请给出证明;若不能,请说明理由;
(2)把背景中的正方形分别改成菱形 和菱形 ,将菱形 绕点 按顺时针方向旋转(如图 ,试问当 与 的大小满足怎样的关系时,背景中的结论 仍成立?请说明理由;
(3)把背景中的正方形分别改写成矩形 和矩形 ,且 , , ,将矩形 绕点 按顺时针方向旋转(如图 ,连接 , .小组发现:在旋转过程中, 的值是定值,请求出这个定值.