在等腰ΔABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请答案下列问题:
(1)当点E在线段AB上,CD是ΔACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)
(2)当点E在线段BA的延长线上,CD是ΔACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是ΔACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;
(3)在(1)、(2)的条件下,若DE=2AE=6,则CF= .
阅读、操作与探究: 小亮发现一种方法,可以借助某些直角三角形画矩形,使矩形邻边比的最简形式(如4:6的最简形式为2:3)为两个连续自然数的比,具体操作如下: 如图1,Rt△ABC中,BC,AC,AB的长分别为3,4,5,先以点B为圆心,线段BA的长为半径画弧,交CB的延长线于点D,再过D,A两点分别作AC,CD的平行线,交于点E.得到矩形ACDE,则矩形ACDE的邻边比为. 请仿照小亮的方法解决下列问题: (1)如图2,已知Rt△FGH中,GH:GF:FH= 5:12:13,请你在图2中画一个矩形,使所画矩形邻边比的最简形式为两个连续自然数的比,并写出这个比值; (2)若已知直角三角形的三边比为(n为正整数),则所画矩形(邻边比的最简形式为两个连续自然数的比)的邻边比为.
如图,是⊙的直径,是⊙上一点,是的中点,过点D作⊙O的切线,与AB,AC的延长线分别交于点E,F,连结AD. (1)求证:AF⊥EF; (2)若,AB=5,求线段BE的长.
如图,平行四边形ABCD中,点E是AD边上一点,且 CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G. (1)画出△DEC平移后的三角形; (2)若BC=,BD=6,CE=3,求AG的长.
已知关于的一元二次方程有两个不相等的实数根. (1)求的取值范围; (2)若为小于2的整数,且方程的根都是整数,求的值.
已知,求代数式的值.