先化简,再求值:,其中.
已知:如图,在菱形中,点,分别在边,上,且,连结,.求证:.
计算:.
如图1,经过等边的顶点,(圆心在内),分别与,的延长线交于点,,连结,交于点.
(1)求证:.
(2)当,时,求的长.
(3)设,.
①求关于的函数表达式;
②如图2,连结,,若的面积是面积的10倍,求的值.
定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.
(1)如图1,在中,,是的角平分线,,分别是,上的点.
求证:四边形是邻余四边形.
(2)如图2,在的方格纸中,,在格点上,请画出一个符合条件的邻余四边形,使是邻余线,,在格点上.
(3)如图3,在(1)的条件下,取中点,连结并延长交于点,延长交于点.若为的中点,,,求邻余线的长.
某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程(米与时间(分的函数关系如图2所示.
(1)求第一班车离入口处的路程(米与时间(分的函数表达式.
(2)求第一班车从入口处到达塔林所需的时间.
(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)