初中数学

已知四边形 ABCD 是边长为1的正方形,点 E 是射线 BC 上的动点,以 AE 为直角边在直线 BC 的上方作等腰直角三角形 AEF AEF = 90 ° ,设 BE = m

(1)如图,若点 E 在线段 BC 上运动, EF CD 于点 P AF CD 于点 Q ,连结 CF

①当 m = 1 3 时,求线段 CF 的长;

②在 ΔPQE 中,设边 QE 上的高为 h ,请用含 m 的代数式表示 h ,并求 h 的最大值;

(2)设过 BC 的中点且垂直于 BC 的直线被等腰直角三角形 AEF 截得的线段长为 y ,请直接写出 y m 的关系式.

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

已知:如图, AC DB 相交于点 O AB = DC ABO = DCO

求证:(1) ΔABO ΔDCO

(2) OBC = OCB

来源:2021年江苏省无锡市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

已知正方形 ABCD 与正方形 AEFG ,正方形 AEFG 绕点 A 旋转一周.

(1)如图①,连接 BG CF ,求 CF BG 的值;

(2)当正方形 AEFG 旋转至图②位置时,连接 CF BE ,分别取 CF BE 的中点 M N ,连接 MN 、试探究: MN BE 的关系,并说明理由;

(3)连接 BE BF ,分别取 BE BF 的中点 N Q ,连接 QN AE = 6 ,请直接写出线段 QN 扫过的面积.

来源:2021年江苏省宿迁市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 内接于 O 1 = 2 ,延长 BC 到点 E ,使得 CE = AB ,连接 ED

(1)求证: BD = ED

(2)若 AB = 4 BC = 6 ABC = 60 ° ,求 tan DCB 的值.

来源:2021年江苏省苏州市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

在数学兴趣小组活动中,小亮进行数学探究活动.

(1) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一点,且 AE = 1 ,小亮以 BE 为边作等边三角形 BEF ,如图1.求 CF 的长;

(2) ΔABC 是边长为3的等边三角形, E 是边 AC 上的一个动点,小亮以 BE 为边作等边三角形 BEF ,如图2.在点 E 从点 C 到点 A 的运动过程中,求点 F 所经过的路径长;

(3) ΔABC 是边长为3的等边三角形, M 是高 CD 上的一个动点,小亮以 BM 为边作等边三角形 BMN ,如图3.在点 M 从点 C 到点 D 的运动过程中,求点 N 所经过的路径长;

(4)正方形 ABCD 的边长为3, E 是边 CB 上的一个动点,在点 E 从点 C 到点 B 的运动过程中,小亮以 B 为顶点作正方形 BFGH ,其中点 F G 都在直线 AE 上,如图4.当点 E 到达点 B 时,点 F G H 与点 B 重合.则点 H 所经过的路径长为    ,点 G 所经过的路径长为   

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-20
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ABC = 90 ° ,以点 C 为圆心, CB 为半径作 C D C 上一点,连接 AD CD AB = AD AC 平分 BAD

(1)求证: AD C 的切线;

(2)延长 AD BC 相交于点 E ,若 S ΔEDC = 2 S ΔABC ,求 tan BAC 的值.

来源:2021年江苏省连云港市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

在平面直角坐标系 xOy 中,对于 A A ' 两点,若在 y 轴上存在点 T ,使得 ATA ' = 90 ° ,且 TA = TA ' ,则称 A A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.

(1)①如图,在点 B ( 2 , 0 ) C ( 0 , - 1 ) D ( - 2 , - 2 ) 中,点 M 的关联点是   B  (填" B "、" C "或" D " )

②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是   

(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;

(3)分别以点 E ( 4 , 2 ) Q 为圆心,1为半径作 E Q .若对 E 上的任意一点 G ,在 Q 上总存在点 G ' ,使得 G G ' 两点互相关联,请写出点 Q 的坐标.

来源:2021年江苏省常州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,点 D AB 上, E AC 上, AB = AC B = C ,求证: AD = AE

来源:2021年吉林省中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

实践与探究

操作一:如图①,已知正方形纸片 ABCD ,将正方形纸片沿过点 A 的直线折叠,使点 B 落在正方形 ABCD 的内部,点 B 的对应点为点 M ,折痕为 AE ,再将纸片沿过点 A 的直线折叠,使 AD AM 重合,折痕为 AF ,则 EAF =   度.

操作二:如图②,将正方形纸片沿 EF 继续折叠,点 C 的对应点为点 N .我们发现,当点 E 的位置不同时,点 N 的位置也不同.当点 E BC 边的某一位置时,点 N 恰好落在折痕 AE 上,则 AEF =   度.

在图②中,运用以上操作所得结论,解答下列问题:

(1)设 AM NF 的交点为点 P .求证: ΔANP ΔFNE

(2)若 AB = 3 ,则线段 AP 的长为   

来源:2021年吉林省长春市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AD BC ,垂足为 D BD = CD ,延长 BC E ,使得 CE = CA ,连接 AE

(1)求证: B = ACB

(2)若 AB = 5 AD = 4 ,求 ΔABE 的周长和面积.

来源:2021年湖南省长沙市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ AOB 中, ABO = 90 ° OAB = 30 ° ,以点 O 为圆心, OB 为半径的圆交 BO 的延长线于点 C ,过点 C OA 的平行线,交 O 于点 D ,连接 AD

(1)求证: AD O 的切线;

(2)若 OB = 2 ,求弧 CD 的长.

来源:2021年湖南省张家界市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,已知点 A D C B 在同一条直线上, AD = BC AE = BF AE / / BF

(1)求证: ΔAEC ΔBFD

(2)判断四边形 DECF 的形状,并证明.

来源:2021年湖南省永州市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图,在正方形 ABCD 中,对角线 AC BD 相交于点 O ,点 E F 是对角线 AC 上的两点,且 AE = CF .连接 DE DF BE BF

(1)证明: ΔADE ΔCBF

(2)若 AB = 4 2 AE = 2 ,求四边形 BEDF 的周长.

来源:2021年湖南省邵阳市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

如图①, E F 是等腰 Rt Δ ABC 的斜边 BC 上的两动点, EAF = 45 ° CD BC CD = BE

(1)求证: ΔABE ΔACD

(2)求证: E F 2 = B E 2 + C F 2

(3)如图②,作 AH BC ,垂足为 H ,设 EAH = α FAH = β ,不妨设 AB = 2 ,请利用(2)的结论证明:当 α + β = 45 ° 时, tan ( α + β ) = tan α + tan β 1 - tan α tan β 成立.

来源:2021年湖南省娄底市中考数学试卷
  • 更新:2021-08-21
  • 题型:未知
  • 难度:未知

已知:如图,四边形 ABCD 为平行四边形,点 E A C F 在同一直线上, AE = CF

求证:(1) ΔADE ΔCBF

(2) ED / / BF

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题