在平面直角坐标系 xOy 中,对于 A 、 A ' 两点,若在 y 轴上存在点 T ,使得 ∠ ATA ' = 90 ° ,且 TA = TA ' ,则称 A 、 A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) 、 N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.
(1)①如图,在点 B ( 2 , 0 ) 、 C ( 0 , - 1 ) 、 D ( - 2 , - 2 ) 中,点 M 的关联点是 B (填" B "、" C "或" D " ) ;
②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是 ;
(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;
(3)分别以点 E ( 4 , 2 ) 、 Q 为圆心,1为半径作 ⊙ E 、 ⊙ Q .若对 ⊙ E 上的任意一点 G ,在 ⊙ Q 上总存在点 G ' ,使得 G 、 G ' 两点互相关联,请写出点 Q 的坐标.
(本小题满分10分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于)的矩形花圃,设花圃一边的长为m,面积为. (1)求与的函数关系式; (2)如果要围成面积为的花圃,的长是多少? (3)能围成面积比更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.
(本小题满分8分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了名学生; (2)将图①补充完整; (3)求出图②中C级所占的圆心角的度数; (4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标(达标包括A级和B级)?
(本小题满分8分) 如图,从热气球上测得两建筑物、底部的俯角分别为30°和.如果这时气球的高度为90米.且点、、在同一直线上,求建筑物、间的距离.
(本小题满分8分) 如图,在正方形中,分别是边上的点,连结并延长交的延长线于点 (1)求证:; (2)若正方形的边长为4,求的长.
(本题共两小题,每小题6分,满分12分) (1)计算: (2)解方程: