在平面直角坐标系 xOy 中,对于 A 、 A ' 两点,若在 y 轴上存在点 T ,使得 ∠ ATA ' = 90 ° ,且 TA = TA ' ,则称 A 、 A ' 两点互相关联,把其中一个点叫做另一个点的关联点.已知点 M ( - 2 , 0 ) 、 N ( - 1 , 0 ) ,点 Q ( m , n ) 在一次函数 y = - 2 x + 1 的图象上.
(1)①如图,在点 B ( 2 , 0 ) 、 C ( 0 , - 1 ) 、 D ( - 2 , - 2 ) 中,点 M 的关联点是 B (填" B "、" C "或" D " ) ;
②若在线段 MN 上存在点 P ( 1 , 1 ) 的关联点 P ' ,则点 P ' 的坐标是 ;
(2)若在线段 MN 上存在点 Q 的关联点 Q ' ,求实数 m 的取值范围;
(3)分别以点 E ( 4 , 2 ) 、 Q 为圆心,1为半径作 ⊙ E 、 ⊙ Q .若对 ⊙ E 上的任意一点 G ,在 ⊙ Q 上总存在点 G ' ,使得 G 、 G ' 两点互相关联,请写出点 Q 的坐标.
(Ⅰ)化简:; (Ⅱ)解分式方程:
数与数之间的关系真奇妙,例如:①;②;③.某教师分析如下:⑴以上这些等式都有一个共同特征:两个实数的差等于这两个实数的商;⑵如果等号左边的第一个实数用表示,第二个实数用表示,则可以得到一个关于的关系式.请你根据以上分析,再找出一组满足上述特征的两个实数,并写成等式形式:.
如图所示,过点作垂直轴的直线,分别交函数图象于两点,则 .
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒). (1)当t为何值时,四边形PQDC是平行四边形. (2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2? (3)是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.
如图,已知四边形ABCD是边长为2的正方形,以对角线BD为边作正三角形BDE,过E作DA 的延长线的垂线EF,垂足为F。 (1)找出图中与EF相等的线段,并证明你的结论; (2)求AF的长。