实践与探究
操作一:如图①,已知正方形纸片 ABCD ,将正方形纸片沿过点 A 的直线折叠,使点 B 落在正方形 ABCD 的内部,点 B 的对应点为点 M ,折痕为 AE ,再将纸片沿过点 A 的直线折叠,使 AD 与 AM 重合,折痕为 AF ,则 ∠ EAF = 度.
操作二:如图②,将正方形纸片沿 EF 继续折叠,点 C 的对应点为点 N .我们发现,当点 E 的位置不同时,点 N 的位置也不同.当点 E 在 BC 边的某一位置时,点 N 恰好落在折痕 AE 上,则 ∠ AEF = 度.
在图②中,运用以上操作所得结论,解答下列问题:
(1)设 AM 与 NF 的交点为点 P .求证: ΔANP ≅ ΔFNE ;
(2)若 AB = 3 ,则线段 AP 的长为 .
先化简,再求值(本题6分),其中 。
计算:(每小题4分,共8分) (1)12+│-6│-(-3)(2)
在矩形ABCD中,AB=8,AD=6,点E,F在BC,CD边上,BE ="4,DF=5," P是线段EF上一动点(不运动至点E,F),过点P作PMAD于M,PNAB于N,设PN=x,矩形PMAN面积为S (1)求S关于x函数解析式和自变量的取值范围; (2)当PM,PN长是关于t的方程两实根时,求EP:PF的值和K的值.
如图,矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动,点Q沿DA 边从点D开始向点A以1cm/秒的速度移动,如果P, Q同时出发, 用t(秒)表示移动时间(0),那么 (1)当t为何值时,△QAP为等腰三角形? (2)当t为何值时,以Q、A、P为顶点的三角形与△ABC相似?
已知P为等边△ABC外接圆上的一点,CP延长线和AB的延长线相交于点D,连结 BP,求证:.