初中数学

如图,在矩形 ABCD 中, AD = 5 CD = 4 ,点 E BC 边上的点, BE = 3 ,连接 AE DF AE 交于点 F

(1)求证: ΔABE ΔDFA

(2)连接 CF ,求 sin DCF 的值;

(3)连接 AC DF 于点 G ,求 AG GC 的值.

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AB O 的直径, AC 为弦, BA 的平分线交 O 于点 D ,过点 D 的切线交 AC 的延长线于点 E

求证:(1) DE AE

(2) AE + CE = AB

来源:2018年黑龙江省绥化市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ BCD 中, CBD = 90 ° BC = BD ,点 A CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF EA ,交 CD 所在直线于点 F

(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: BC DE = 2 2 DF

(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 BC DE DF 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2018年黑龙江省七台河市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ BCD 中, CBD = 90 ° BC = BD ,点 A CB 的延长线上,且 BA = BC ,点 E 在直线 BD 上移动,过点 E 作射线 EF EA ,交 CD 所在直线于点 F

(1)当点 E 在线段 BD 上移动时,如图(1)所示,求证: AE = EF

(2)当点 E 在直线 BD 上移动时,如图(2)、图(3)所示,线段 AE EF 又有怎样的数量关系?请直接写出你的猜想,不需证明.

来源:2018年黑龙江省七台河市中考数学试卷(农垦、森工用)
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在等腰 ΔABC 中, B = 90 ° AM ΔABC 的角平分线,过点 M MN AC 于点 N EMF = 135 ° .将 EMF 绕点 M 旋转,使 EMF 的两边交直线 AB 于点 E ,交直线 AC 于点 F ,请解答下列问题:

(1)当 EMF 绕点 M 旋转到如图①的位置时,求证: BE + CF = BM

(2)当 EMF 绕点 M 旋转到如图②,图③的位置时,请分别写出线段 BE CF BM 之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下, tan BEM = 3 AN = 2 + 1 ,则 BM =    CF =   

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

在四边形 ABCD 中, B = C = 90 ° AB = 3 BC = 4 CD = 1 .以 AD 为腰作等腰 ΔADE ,使 ADE = 90 ° ,过点 E EF DC 交直线 CD 于点 F .请画出图形,并直接写出 AF 的长.

来源:2018年黑龙江省牡丹江市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知: O 是正方形 ABCD 的外接圆,点 E AB ̂ 上,连接 BE DE ,点 F AD ̂ 上连接 BF DF BF DE DA 分别交于点 G 、点 H ,且 DA 平分 EDF

(1)如图1,求证: CBE = DHG

(2)如图2,在线段 AH 上取一点 N (点 N 不与点 A 、点 H 重合),连接 BN DE 于点 L ,过点 H HK / / BN DE 于点 K ,过点 E EP BN ,垂足为点 P ,当 BP = HF 时,求证: BE = HK

(3)如图3,在(2)的条件下,当 3 HF = 2 DF 时,延长 EP O 于点 R ,连接 BR ,若 ΔBER 的面积与 ΔDHK 的面积的差为 7 4 ,求线段 BR 的长.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

已知:在四边形 ABCD 中,对角线 AC BD 相交于点 E ,且 AC BD ,作 BF CD ,垂足为点 F BF AC 交于点 G BGE = ADE

(1)如图1,求证: AD = CD

(2)如图2, BH ΔABE 的中线,若 AE = 2 DE DE = EG ,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于 ΔADE 面积的2倍.

来源:2018年黑龙江省哈尔滨市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,点 E 为线段 OB 上一点(不与 O B 重合),作 EC OB ,交 O 于点 C ,作直径 CD ,过点 C 的切线交 DB 的延长线于点 P ,作 AF PC 于点 F ,连接 CB

(1)求证: AC 平分 FAB

(2)求证: B C 2 = CE CP

(3)当 AB = 4 3 CF CP = 3 4 时,求劣弧 BD ̂ 的长度.

来源:2018年黑龙江省大庆市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AB O 的直径,弦 AC BD 交于点 E ,且 AC = BD ,连接 AD BC

(1)求证: ΔADB ΔBCA

(2)若 OD AC AB = 4 ,求弦 AC 的长;

(3)在(2)的条件下,延长 AB 至点 P ,使 BP = 2 ,连接 PC .求证: PC O 的切线.

来源:2019年贵州省遵义市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

如图, AB = AC AB AC AD AE ,且 ABD = ACE

求证: BD = CE

来源:2019年贵州省铜仁市中考数学试卷
  • 更新:2021-05-20
  • 题型:未知
  • 难度:未知

(1)如图①,在四边形 ABCD 中, AB / / CD ,点 E BC 的中点,若 AE BAD 的平分线,试判断 AB AD DC 之间的等量关系.

解决此问题可以用如下方法:延长 AE DC 的延长线于点 F ,易证 ΔAEB ΔFEC 得到 AB = FC ,从而把 AB AD DC 转化在一个三角形中即可判断.

AB AD DC 之间的等量关系  

(2)问题探究:如图②,在四边形 ABCD 中, AB / / CD AF DC 的延长线交于点 F ,点 E BC 的中点,若 AE BAF 的平分线,试探究 AB AF CF 之间的等量关系,并证明你的结论.

来源:2019年贵州省安顺市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, ACB = 90 ° O D 分别是边 AC AB 的中点,过点 C CE / / AB DO 的延长线于点 E ,连接 AE

(1)求证:四边形 AECD 是菱形;

(2)若四边形 AECD 的面积为24, tan BAC = 3 4 ,求 BC 的长.

来源:2018年广西贺州市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,点 A D C F 在同一条直线上, AD = CF AB = DE BC = EF

(1)求证: ΔABC ΔDEF

(2)若 A = 55 ° B = 88 ° ,求 F 的度数.

来源:2018年广西桂林市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中, AE BC AF CD ,垂足分别为 E F ,且 BE = DF

(1)求证: ABCD 是菱形;

(2)若 AB = 5 AC = 6 ,求 ABCD 的面积.

来源:2018年广西北海市中考数学试卷
  • 更新:2021-05-19
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题