已知 为直线 上一点, ,在等腰 中, , 交 于 , 为 的中点, 交 于 .
(1)如图1,若点 在 上,则
① (填“ ”,“ ”或“ ” ;
②线段 、 、 满足的等量关系式是 ;
(2)将图1中的等腰 绕 点顺时针旋转 ,如图2,那么(1)中的结论②是否成立?请说明理由;
(3)将图1中的等腰 绕 点顺时针旋转 ,请你在图3中画出图形,并直接写出线段 、 、 满足的等量关系式 .
如图,正方形 中, 是对角线 上的一个动点(不与 、 重合),连结 ,将 绕点 顺时针旋转 到 ,连结 交 于点 , 延长线与边 交于点 .
(1)连结 ,求证: ;
(2)若 ,求 的值;
(3)求证: .
如图,点 、 、 、 在同一直线上,点 、 在 异侧, , , .
(1)求证: ;
(2)若 , ,求 的度数.
如图,将矩形 沿对角线 翻折,点 落在点 处, 交 于 .
(1)求证: ;
(2)若 , ,求图中阴影部分的面积.
如图, 和 都是等边三角形,点 、 、 三点在同一直线上,连接 , , 交 于点 .
(1)若 ,求证: ;
(2)若 , .
①求 的值;②求 的长.
如图,点 、 分别是等边 边 、 上的动点(端点除外),点 、点 以相同的速度,同时从点 、点 出发.
(1)如图1,连接 、 .求证: ;
(2)如图1,当点 、 分别在 、 边上运动时, 、 相交于点 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数;
(3)如图2,当点 、 在 、 的延长线上运动时,直线 、 相交于 , 的大小是否变化?若变化,请说明理由;若不变,求出它的度数.
如图,四边形 中, ,点 、 分别在 、 上, ,过点 、 分别作 的垂线,垂足为 、 .
(1)求证: ;
(2)连接 ,线段 与 是否互相平分?请说明理由.
如图①是一张矩形纸片,按以下步骤进行操作:
(Ⅰ)将矩形纸片沿 折叠,使点 落在 边上点 处,如图②;
(Ⅱ)在第一次折叠的基础上,过点 再次折叠,使得点 落在边 上点 处,如图③,两次折痕交于点 ;
(Ⅲ)展开纸片,分别连接 、 、 、 ,如图④.
(探究)
(1)证明: ;
(2)若 ,设 为 , 为 ,求 关于 的关系式.
点 是平行四边形 的对角线 所在直线上的一个动点(点 不与点 、 重合),分别过点 、 向直线 作垂线,垂足分别为点 、 .点 为 的中点.
(1)如图1,当点 与点 重合时,线段 和 的关系是 ;
(2)当点 运动到如图2所示的位置时,请在图中补全图形并通过证明判断(1)中的结论是否仍然成立?
(3)如图3,点 在线段 的延长线上运动,当 时,试探究线段 、 、 之间的关系.
如图,在 中, ,点 、 分别在 、 上, , 、 相交于点 .
(1)求证: ;
(2)求证: .
如图, 中, ,将 绕点 顺时针旋转得到 ,点 落在线段 上,连接 .
(1)求证: 平分 ;
(2)试判断 与 的位置关系,并说明理由;
(3)若 ,求 的值.
如图,在 中,点 、 分别在边 、 上,且 ,直线 与 、 的延长线分别交于点 , .求证:
(1) ;
(2) .
如图,线段 ,射线 , 为射线 上一点,以 为边作正方形 ,且点 、 与点 在 两侧,在线段 上取一点 ,使 ,直线 与线段 相交于点 (点 与点 、 不重合).
(1)求证: ;
(2)判断 与 的位置关系,并说明理由;
(3)求 的周长.