已知 O 为直线 MN 上一点, OP ⊥ MN ,在等腰 Rt Δ ABO 中, ∠ BAO = 90 ° , AC / / OP 交 OM 于 C , D 为 OB 的中点, DE ⊥ DC 交 MN 于 E .
(1)如图1,若点 B 在 OP 上,则
① AC OE (填“ < ”,“ = ”或“ > ” ) ;
②线段 CA 、 CO 、 CD 满足的等量关系式是 ;
(2)将图1中的等腰 Rt Δ ABO 绕 O 点顺时针旋转 α ( 0 ° < α < 45 ° ) ,如图2,那么(1)中的结论②是否成立?请说明理由;
(3)将图1中的等腰 Rt Δ ABO 绕 O 点顺时针旋转 α ( 45 ° < α < 90 ° ) ,请你在图3中画出图形,并直接写出线段 CA 、 CO 、 CD 满足的等量关系式 .
“六一”儿童节,小明与小亮受邀到科技馆担任义务讲解员,他们俩各自独立从A区(时代辉煌)、B区(科学启迪)、C区(智慧之光)、D区(儿童世界)这四个主题展区随机选择一个为参观者服务。(1)请用列表法或画树状图法说明当天小明与小亮出现在各主题展区担任义务讲解员的所有可能情况(用字母表示)。(2)求小明和小亮只单独出现在C区(智慧之光)、D区(儿童世界)两个主题展区中担任义务讲解员的概率。
如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,且AF=DC,连结CF。(1)求证D是BC的中点。(2)如果AB=AC,试猜测四边形ADCF的形状,并证明你的结论。
某中学九年级1班同学积极响应“阳光体育工程”的号召,利用课外活动时间积极参加体育锻炼,每位同学从长跑、篮球、铅球、立定跳远中选一项进行训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮测试成绩整理后作出如下统计图表:
(1)求选择长跑训练的人数占全班人数的百分比和该班学生的总人数。(2)求训练后篮球定时定点投篮人均进球数。(3)根据测试资料,训练后篮球定时定点投篮人均进球数比训练之前人均进行球增加25%。求参加训练之前的人均进球数。
解不等式组
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒). 当t为何值时,四边形PQDC是平行四边形 当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2? 是否存在点P,使△PQD是等腰三角形?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.