如图,正方形 ABCD 中, P 是对角线 AC 上的一个动点(不与 A 、 C 重合),连结 BP ,将 BP 绕点 B 顺时针旋转 90 ° 到 BQ ,连结 QP 交 BC 于点 E , QP 延长线与边 AD 交于点 F .
(1)连结 CQ ,求证: AP = CQ ;
(2)若 AP = 1 4 AC ,求 CE : BC 的值;
(3)求证: PF = EQ .
如图,在□ABCD中,E、F为对角线BD上的两点,且BE=DF.求证:∠BAE=∠DCF.
(1)解方程:;(2)解方程组:.
(1)(-3)2-+(-1)0+2cos30º;(2)化简:.
已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点, (1)如果动点E、F满足BE=CF(如图): ①写出所有以点E或F为顶点的全等三角形(不得添加辅助线); ②证明:AE⊥BF; (2)如果动点E、F满足BE=OF(如图),问当AE⊥BF时,点E在什么位置,并证明你的结论.
某校初四年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P. (1)求证:AM=AN; (2)当旋转角α=30°时,四边形ABPF是什么样的特殊四边形?并说明理由.