如图,在 中,连接 , 是 延长线上的点, 是 延长线上的点,且 ,连接 交 于点 .求证: .
已知,在 中, , ,点 为 的中点.
(1)如图①,若点 、 分别为 、 上的点,且 ,求证: ;
(2)若点 、 分别为 、 延长线上的点,且 ,那么 吗?请利用图②说明理由.
如图,将矩形纸片 沿直线 折叠,顶点 恰好与 边上的动点 重合(点 不与点 , 重合),折痕为 ,点 , 分别在边 , 上,连接 , , , 与 相交于点 .
(1)求证: ;
(2)①在图2中,作出经过 , , 三点的 (要求保留作图痕迹,不写做法);
②设 ,随着点 在 上的运动,若①中的 恰好与 , 同时相切,求此时 的长.
如图,在直角坐标系中, 的直角边 在 轴上, , ,反比例函数 的图象经过 边的中点 .
(1)求这个反比例函数的表达式;
(2)若 与 成中心对称,且 的边 在 轴的正半轴上,点 在这个函数的图象上.
①求 的长;
②连接 , ,证明四边形 是正方形.
已知正方形 , 为射线 上的一点,以 为边作正方形 ,使点 在线段 的延长线上,连接 , .
(1)如图1,若点 在线段 的延长线上,求证: ;
(2)如图2,若点 在线段 的中点,连接 ,判断 的形状,并说明理由;
(3)如图3,若点 在线段 上,连接 ,当 平分 时,设 , ,求 及 的度数.
【操作发现】
(1)如图1, 为等边三角形,先将三角板中的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板斜边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .
①求 的度数;
② 与 相等吗?请说明理由;
【类比探究】
(2)如图2, 为等腰直角三角形, ,先将三角板的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板另一直角边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .请直接写出探究结果:
① 的度数;
②线段 , , 之间的数量关系.
如图,已知 , , ,垂足为 .
(1)求证: ;
(2)只需添加一个条件,即 ,可使四边形 为矩形.请加以证明.
已知:如图,在菱形 中,点 , , 分别为 , , 的中点,连接 , , , .
(1)求证: ;
(2)当 与 满足什么关系时,四边形 是正方形?请说明理由.
数学课上,张老师出示了问题:如图1, , 是四边形 的对角线,若 ,则线段 , , 三者之间有何等量关系?
经过思考,小明展示了一种正确的思路:如图2,延长 到 ,使 ,连接 ,证得 ,从而容易证明 是等边三角形,故 ,所以 .
小亮展示了另一种正确的思路:如图3,将 绕着点 逆时针旋转 ,使 与 重合,从而容易证明 是等边三角形,故 ,所以 .
在此基础上,同学们作了进一步的研究:
(1)小颖提出:如图4,如果把“ ”改为“ ”,其它条件不变,那么线段 , , 三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.
(2)小华提出:如图5,如果把“ ”改为“ ”,其它条件不变,那么线段 , , 三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.
已知 与 是两个大小不同的等腰直角三角形.
(1)如图①所示,连接 , ,试判断线段 和 的数量和位置关系,并说明理由;
(2)如图②所示,连接 ,将线段 绕 点顺时针旋转 到 ,连接 ,试判断线段 和 的数量和位置关系,并说明理由.
实验探究:
(1)如图1,对折矩形纸片 ,使 与 重合,得到折痕 ,把纸片展开;再一次折叠纸片,使点 落在 上,并使折痕经过点 ,得到折痕 ,同时得到线段 , .请你观察图1,猜想 的度数是多少,并证明你的结论.
(2)将图1中的三角形纸片 剪下,如图2.折叠该纸片,探究 与 的数量关系.写出折叠方案,并结合方案证明你的结论.
某学习小组的学生在学习中遇到了下面的问题:
如图1,在 和 中, , ,点 , , 在同一条直线上,连接 ,点 是 的中点,连接 , ,试判断 的形状并说明理由.
问题探究:
(1)小婷同学提出解题思路:先探究 的两条边是否相等,如 ,以下是她的证明过程
证明:延长线段 交 的延长线于点 . 是 的中点, . , . |
. 又 , . . . |
请根据以上证明过程,解答下列两个问题:
①在图1中作出证明中所描述的辅助线;
②在证明的括号中填写理由(请在 , , , 中选择).
(2)在(1)的探究结论的基础上,请你帮助小婷求出 的度数,并判断 的形状.
问题拓展:
(3)如图2,当 绕点 逆时针旋转某个角度时,连接 ,延长 交 的延长线于点 ,其他条件不变,判断 的形状并给出证明.