初中数学

已知:如图,四边形中,是对角线上一点,且

(1)求证:四边形是菱形;

(2)如果,且,求证:四边形是正方形.

来源:2017年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

已知:如图, O ΔABC 的外接圆, AB ̂ = AC ̂ ,点 D 在边 BC 上, AE / / BC AE = BD

(1)求证: AD = CE

(2)如果点 G 在线段 DC 上(不与点 D 重合),且 AG = AD ,求证:四边形 AGCE 是平行四边形.

来源:2016年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,点在直线上,,且,求证:

来源:2019年陕西省中考数学试卷
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,在中,边的中点,过点,并与交于点,延长到点,使得,连接

求证:

来源:2019年陕西省中考数学试卷(副卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,分别为上的点,且,连接,分别与相交于点,若,求证:

来源:2018年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在中,是边的中点,延长到点,使,延长到点,使,连接,求证:

来源:2018年陕西省中考数学试卷(副卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在正方形中,分别为边上的点,且,连接交于点.求证:

来源:2017年陕西省中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在中,延长到点,延长到点,使,连接边于点,交边于点.求证:

来源:2017年陕西省中考数学试卷(副卷)
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,连接 BD ,在 BD 的延长线上取一点 E ,在 DB 的延长线上取一点 F ,使 BF = DE ,连接 AF CE

求证: AF / / CE

来源:2016年陕西省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图所示,在平面直角坐标系中, O 为坐标原点,且 ΔAOB 是等腰直角三角形, AOB = 90 ° ,点 A ( 2 , 1 )

(1)求点 B 的坐标;

(2)求经过 A O B 三点的抛物线的函数表达式;

(3)在(2)所求的抛物线上,是否存在一点 P ,使四边形 ABOP 的面积最大?若存在,求出点 P 的坐标;若不存在,请说明理由.

来源:2016年陕西省中考数学试卷(副卷)
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

如图,在菱形 ABCD 中,点 E 是边 AD 上一点,延长 AB 至点 F ,使 BF = AE ,连接 BE CF

求证: BE = CF

来源:2016年陕西省中考数学试卷(副卷)
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

在图1,2,3中,已知,点为线段上的动点,连接,以为边向上作菱形,且

(1)如图1,当点与点重合时,  

(2)如图2,连接

①填空:  (填“”,“ “,“

②求证:点的平分线上;

(3)如图3,连接,并延长的延长线于点,当四边形是平行四边形时,求的值.

来源:2019年江西省中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

中,.点是平面内不与点重合的任意一点.连接,将线段绕点逆时针旋转得到线段,连接

(1)观察猜想

如图1,当时,的值是  ,直线与直线相交所成的较小角的度数是  

(2)类比探究

如图2,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图2的情形说明理由.

(3)解决问题

时,若点分别是的中点,点在直线上,请直接写出点在同一直线上时的值.

来源:2019年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

如图,在中,,以为直径的半圆于点,点上不与点重合的任意一点,连接于点,连接并延长交于点

(1)求证:

(2)填空:

①若,且点的中点,则的长为   

②取的中点,当的度数为  时,四边形为菱形.

来源:2019年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

(1)问题发现

如图1,在中,,连接交于点.填空:

的值为  

的度数为  

(2)类比探究

如图2,在中,,连接的延长线于点.请判断的值及的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将绕点在平面内旋转,所在直线交于点,若,请直接写出当点与点重合时的长.

来源:2018年河南省中考数学试卷
  • 更新:2020-12-29
  • 题型:未知
  • 难度:未知

初中数学全等三角形的判定与性质解答题