初中数学

O 中,弦 CD 与直径 AB 相交于点 P ABC = 63 °

(Ⅰ)如图①,若 APC = 100 ° ,求 BAD CDB 的大小;

(Ⅱ)如图②,若 CD AB ,过点 D O 的切线,与 AB 的延长线相交于点 E ,求 E 的大小.

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在每个小正方形的边长为1的网格中, ΔABC 的顶点 A C 均落在格点上,点 B 在网格线上,且 AB = 5 3

(Ⅰ)线段 AC 的长等于  

(Ⅱ)以 BC 为直径的半圆与边 AC 相交于点 D ,若 P Q 分别为边 AC BC 上的动点,当 BP + PQ 取得最小值时,请用无刻度的直尺,在如图所示的网格中,画出点 P Q ,并简要说明点 P Q 的位置是如何找到的(不要求证明)  

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ABCD 的顶点 C 在等边 ΔBEF 的边 BF 上,点 E AB 的延长线上, G DE 的中点,连接 CG .若 AD = 3 AB = CF = 2 ,则 CG 的长为  

来源:2020年天津市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, BAC = 90 ° AB = AC ,点 D BC 边上一动点,连接 AD ,把 AD 绕点 A 逆时针旋转 90 ° ,得到 AE ,连接 CE DE .点 F DE 的中点,连接 CF

(1)求证: CF = 2 2 AD

(2)如图2所示,在点 D 运动的过程中,当 BD = 2 CD 时,分别延长 CF BA ,相交于点 G ,猜想 AG BC 存在的数量关系,并证明你猜想的结论;

(3)在点 D 运动的过程中,在线段 AD 上存在一点 P ,使 PA + PB + PC 的值最小.当 PA + PB + PC 的值取得最小值时, AP 的长为 m ,请直接用含 m 的式子表示 CE 的长.

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中,对角线 AC BD 相交于点 O ,分别过点 A C AE BD CF BD ,垂足分别为 E F AC 平分 DAE

(1)若 AOE = 50 ° ,求 ACB 的度数;

(2)求证: AE = CF

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,矩形 ABCD 的对角线 AC 的中点与坐标原点重合,点 E x 轴上一点,连接 AE .若 AD 平分 OAE ,反比例函数 y = k x ( k > 0 , x > 0 ) 的图象经过 AE 上的两点 A F ,且 AF = EF ΔABE 的面积为18,则 k 的值为 (    )

A.6B.12C.18D.24

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,三角形纸片 ABC ,点 D BC 边上一点,连接 AD ,把 ΔABD 沿着 AD 翻折,得到 ΔAED DE AC 交于点 G ,连接 BE AD 于点 F .若 DG = GE AF = 3 BF = 2 ΔADG 的面积为2,则点 F BC 的距离为 (    )

A. 5 5 B. 2 5 5 C. 4 5 5 D. 4 3 3

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, AB O 的切线, A 为切点,连接 OA OB ,若 B = 20 ° ,则 AOB 的度数为 (    )

A. 40 ° B. 50 ° C. 60 ° D. 70 °

来源:2020年重庆市中考数学试卷(a卷)
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 是矩形,点 E 是矩形 ABCD 的边上的点,且 EA = EC .若 AB = 6 AC = 2 10 ,则 DE 的长是   

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,四边形 ABCD 是菱形,点 H 为对角线 AC 的中点,点 E AB 的延长线上, CE AB ,垂足为 E ,点 F AD 的延长线上, CF AD ,垂足为 F

(1)若 BAD = 60 ° ,求证:四边形 CEHF 是菱形;

(2)若 CE = 4 ΔACE 的面积为16,求菱形 ABCD 的面积.

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,已知 AD = BC BD = AC .求证: ADB = BCA

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

已知四边形 ABCD 是矩形,点 E 是矩形 ABCD 的边上的点,且 EA = EC .若 AB = 6 AC = 2 10 ,则 DE 的长是   

来源:2020年云南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图,点 P O 的直径 AB 延长线上的一点 ( PB < OB ) ,点 E 是线段 OP 的中点.

(1)尺规作图:在直径 AB 上方的圆上作一点 C ,使得 EC = EP ,连接 EC PC (保留清晰作图痕迹,不要求写作法);并证明 PC O 的切线;

(2)在(1)的条件下,若 BP = 4 EB = 1 ,求 PC 的长.

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

初中数学三角形试题