如图,在 Rt Δ ABC 中, ∠ BAC = 90 ° , AB = AC ,点 D 是 BC 边上一动点,连接 AD ,把 AD 绕点 A 逆时针旋转 90 ° ,得到 AE ,连接 CE , DE .点 F 是 DE 的中点,连接 CF .
(1)求证: CF = 2 2 AD ;
(2)如图2所示,在点 D 运动的过程中,当 BD = 2 CD 时,分别延长 CF , BA ,相交于点 G ,猜想 AG 与 BC 存在的数量关系,并证明你猜想的结论;
(3)在点 D 运动的过程中,在线段 AD 上存在一点 P ,使 PA + PB + PC 的值最小.当 PA + PB + PC 的值取得最小值时, AP 的长为 m ,请直接用含 m 的式子表示 CE 的长.
(本题满分10分,第(1)小题7分,第(2)小题3分) 如图6,矩形纸片ABCD的边长AB=4,AD=2.翻折矩形纸片,使点A与点C重合,折痕分别交AB、CD于点E、F, (1)在图6中,用尺规作折痕EF所在的直线(保留作图痕迹,不写作法),并求线段EF的长; (2)求∠EFC的正弦值.
(本题满分10分)解方程:.
解不等式组:把它的解集在数轴上表示出来,并求它的整数解.
(本题满分14分,第(1)题4分,第(2)题4分,第(2)题6分) 在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F. (1)如图,当点F在线段DE上时,设BE,DF,试建立关于的函数关系式, 并写出自变量的取值范围; (2)当以CD直径的⊙O与⊙E与相切时,求的值; (3)联接AF、BF,当△ABF是以AF为腰的等腰三角形时,求的值。
(本题满分12分,第(1)、(2)题各6分) 如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2. (1)求直线AD和抛物线的解析式; (2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.