某公司市场营销部的营销员的个人月收入与该营销员每月的销量成一次函数关系,其图象如图8所示. 根据图象提供的信息,解答下列问题:求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式;该公司营销人员的底薪是(没有销售量时的收入)多少元?已知该公司营销员李明5月份的销售量为1.2万件,求李明5月份的收入.
先化简,再求值:,其中.
如图,在平面直角坐标系中.顶点为(﹣4,﹣1)的抛物线交y轴于点A(0,3),交x轴于B,C两点. (1)求此抛物线的解析式; (2)已知点P是抛物线上位于B,C两点之间的一个动点,问:当点P运动到什么位置时,四边形ABPC的面积最大?并求出此时四边形ABPC的面积. (3)过点B作AB的垂线交抛物线于点D,是否存在以点C为圆心且与线段BD和抛物线的对称轴l同时相切的圆?若存在,求出圆的半径;若不存在,请说明理由.
如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线,交AB于点E,交CA的延长线于点F. (1)求证:FE⊥AB; (2)当EF=6,时,求DE的长.
定义运算max{a,b}:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b.如max{﹣3,2}=2. (1)max{,3}=; (2)已知和在同一坐标系中的图象如图所示,若max{,}=,结合图象,直接写出x的取值范围; (3)用分类讨论的方法,求max{2x+1,x﹣2}的值.
某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元. (1)求每个篮球和每个排球的销售利润; (2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.