如图,在矩形 ABCD中, AD=8,对角线 AC与 BD相交于点 O, AE⊥ BD,垂足为点 E,且 AE平分∠ BAC,则 AB的长为 .
已知正方形 ABCD的面积是2, E为正方形一边 BC在从 B到 C方向的延长线上的一点,若 CE= ,连接 AE,与正方形另外一边 CD交于点 F,连接 BF并延长,与线段 DE交于点 G,则 BG的长为 .
如图,在Rt△ ABC中,∠ ABC=90°, BC=3, D为斜边 AC的中点,连接 BD,点 F是 BC边上的动点(不与点 B、 C重合),过点 B作 BE⊥ BD交 DF延长线交于点 E,连接 CE,下列结论:
①若 BF= CF,则 CE 2+ AD 2= DE 2;
②若∠ BDE=∠ BAC, AB=4,则 CE= ;
③△ ABD和△ CBE一定相似;
④若∠ A=30°,∠ BCE=90°,则 DE= .
其中正确的是 .(填写所有正确结论的序号)
如图,在矩形 ABCD中, AB=8, BC=6, M为 AD上一点,将△ ABM沿 BM翻折至△ EBM, ME和 BE分别与 CD相交于 O, F两点,且 OE= OD,则 AM的长为 .
如图,在△ABC中,按以下步骤作图:①分别以点A和点C为圆心,以大于 x(x-1)=21.AC的长为半径作弧,两弧相交于M、N两点;②作直线MN交BC于点D,连接AD.若AB=BD,AB=6,∠C=30°,则△ACD的面积为 .
如图,已知正方形 ABCD,点 M是边 BA延长线上的动点(不与点 A重合),且 AM< AB,△ CBE由△ DAM平移得到.若过点 E作 EH⊥ AC, H为垂足,则有以下结论:①点 M位置变化,使得∠ DHC=60°时,2 BE= DM;②无论点 M运动到何处,都有 DM= HM;③无论点 M运动到何处,∠ CHM一定大于135°.其中正确结论的序号为 .
如图1, AF, BE是△ ABC的中线, AF⊥ BE,垂足为点 P,设 BC= a, AC= b, AB= c,则 a 2+ b 2=5 c 2,利用这一性质计算.如图2,在▱ ABCD中, E, F, G分别是 AD, BC, CD的中点, EB⊥ EG于点 E, AD=8, AB=2 ,则 AF= .
如图是一个边长为4的正方形,长为4的线段 PQ的两端在正方形相邻的两边上滑动,且点 P沿 A→ B→ C→ D滑动到点 D终止,在整个滑动过程中, PQ的中点 R所经过的路线长为 .
如图, P是▱ ABCD的边 AD上一点, E、 F分别是 PB、 PC的中点,若▱ ABCD的面积为16 cm 2,则△ PEF的面积(阴影部分)是 cm 2.
如图,在Rt△ ACB中,∠ ACB=90°, AC= BC, D是 AB上的一个动点(不与点 A, B重合),连接 CD,将 CD绕点 C顺时针旋转90°得到 CE,连接 DE, DE与 AC相交于点 F,连接 AE.下列结论:
①△ ACE≌△ BCD;
②若∠ BCD=25°,则∠ AED=65°;
③ DE 2=2 CF• CA;
④若 AB=3 , AD=2 BD,则 AF= .
其中正确的结论是 .(填写所有正确结论的序号)
如图,边长为4的正方形ABCD内接于圆O,点E是 上的一动点(不与A、B重合),点F是 上的一点,连接OE、OF,分别与AB、BC交于点G,H,且 ,有以下结论:
① ;
②△OGH是等腰三角形;
③四边形OGBH的面积随着点E位置的变化而变化;
④△GBH周长的最小值为 .
其中正确的是 (把你认为正确结论的序号都填上).
如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是 .
(1) ;(2) ;(3) ;(4)在旋转过程中,当△BEF与△COF的面积之和最大时, ;(5) .