如图,在边长为1的正方形 中,动点 、 分别在边 、 上,将正方形 沿直线 折叠,使点 的对应点 始终落在边 上(点 不与点 、 重合),点 落在点 处, 与 交于点 ,设 .
(1)当 时,求 的值;
(2)随着点 在边 上位置的变化, 的周长是否发生变化?如变化,请说明理由;如不变,请求出该定值;
(3)设四边形 的面积为 ,求 与 之间的函数表达式,并求出 的最小值.
如图①,直线 表示一条东西走向的笔直公路,四边形 是一块边长为100米的正方形草地,点 , 在直线 上,小明从点 出发,沿公路 向西走了若干米后到达点 处,然后转身沿射线 方向走到点 处,接着又改变方向沿射线 方向走到公路 上的点 处,最后沿公路 回到点 处.设 米(其中 , 米,已知 与 之间的函数关系如图②所示,
(1)求图②中线段 所在直线的函数表达式;
(2)试问小明从起点 出发直至最后回到点 处,所走过的路径(即 是否可以是一个等腰三角形?如果可以,求出相应 的值;如果不可以,说明理由.
在数学兴趣小组活动中,小亮进行数学探究活动. 是边长为2的等边三角形, 是 上一点,小亮以 为边向 的右侧作等边三角形 ,连接 .
(1)如图1,当点 在线段 上时, 、 相交于点 ,小亮发现有两个三角形全等,请你找出来,并证明.
(2)当点 在线段 上运动时,点 也随着运动,若四边形 的面积为 ,求 的长.
(3)如图2,当点 在 的延长线上运动时, 、 相交于点 ,请你探求 的面积 与 的面积 之间的数量关系.并说明理由.
(4)如图2,当 的面积 时,求 的长.
已知, 中, , 是 边上一点,作 ,分别交边 , 于点 , .
(1)若 (如图 ,求证: .
(2)若 ,过点 作 ,交 (或 的延长线)于点 .试猜想:线段 , 和 之间的数量关系,并就 情形(如图 说明理由.
(3)若点 与 重合(如图 , ,且 .
①求 的度数;
②设 , , ,试证明: .
我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.
(1)概念理解:
如图1,在 中, , , ,试判断 是否是”等高底”三角形,请说明理由.
(2)问题探究:
如图2, 是“等高底”三角形, 是”等底”,作 关于 所在直线的对称图形得到△ ,连接 交直线 于点 .若点 是△ 的重心,求 的值.
(3)应用拓展:
如图3,已知 , 与 之间的距离为2.“等高底” 的“等底” 在直线 上,点 在直线 上,有一边的长是 的 倍.将 绕点 按顺时针方向旋转 得到△ , 所在直线交 于点 .求 的值.
如图,在正方形 中,点 在边 上(不与点 , 重合),连接 ,作 于点 , 于点 ,设 .
(1)求证: .
(2)连接 , ,设 , .求证: .
(3)设线段 与对角线 交于点 , 和四边形 的面积分别为 和 ,求 的最大值.
如图,已知线段 , 于点 ,且 , 是射线 上一动点, , 分别是 , 的中点,过点 , , 的圆与 的另一交点 (点 在线段 上),连接 , .
(1)当 时,求 和 的度数;
(2)求证: .
(3)在点 的运动过程中
①当 时,取四边形 一边的两端点和线段 上一点 ,若以这三点为顶点的三角形是直角三角形,且 为锐角顶点,求所有满足条件的 的值;
②记 与圆的另一个交点为 ,将点 绕点 旋转 得到点 ,当点 恰好落在 上时,连接 , , , ,直接写出 和 的面积之比.
在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程 ,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点 , ;
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点 ,另一条直角边恒过点 ;
第三步:在移动过程中,当三角板的直角顶点落在 轴上点 处时,点 的横坐标 即为该方程的一个实数根(如图 ;
第四步:调整三角板直角顶点的位置,当它落在 轴上另一点 处时,点 的横坐标 即为该方程的另一个实数根.
(1)在图2中,按照“第四步”的操作方法作出点 (请保留作出点 时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的 就是方程 的一个实数根;
(3)上述操作的关键是确定两个固定点的位置.若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当 , , , 与 , , 之间满足怎样的关系时,点 , , , 就是符合要求的一对固定点?
在直角坐标系中,过原点 及点 , 作矩形 、连接 ,点 为 的中点,点 是线段 上的动点,连接 ,作 ,交 于点 ,连接 .已知点 从 点出发,以每秒1个单位长度的速度在线段 上移动,设移动时间为 秒.
(1)如图1,当 时,求 的长.
(2)如图2,当点 在线段 上移动的过程中, 的大小是否发生变化?如果变化,请说明理由;如果不变,请求出 的值.
(3)连接 ,当 将 分成的两部分的面积之比为 时,求相应的 的值.
有两个内角分别是它们对角的一半的四边形叫做半对角四边形.
(1)如图1,在半对角四边形 中, , ,求 与 的度数之和;
(2)如图2,锐角 内接于 ,若边 上存在一点 ,使得 , 的平分线交 于点 ,连接 并延长交 于点 , .求证:四边形 是半对角四边形;
(3)如图3,在(2)的条件下,过点 作 于点 ,交 于点 ,当 时,求 与 的面积之比.
如图,在矩形 中,点 是 上的一个动点,连接 ,作点 关于 的对称点 ,且点 落在矩形 的内部,连接 , , ,过点 作 交 于点 ,设 .
(1)求证: ;
(2)当点 落在 上时,用含 的代数式表示 的值;
(3)若 ,且以点 , , 为顶点的三角形是直角三角形,求 的值.
如图1,已知 , 轴, ,点 的坐标为 ,点 的坐标为 ,点 在第四象限,点 是 边上的一个动点.
(1)若点 在边 上, ,求点 的坐标.
(2)若点 在边 , 上,点 关于坐标轴对称的点 落在直线 上,求点 的坐标.
(3)若点 在边 , , 上,点 是 与 轴的交点,如图2,过点 作 轴的平行线 ,过点 作 轴的平行线 ,它们相交于点 ,将 沿直线 翻折,当点 的对应点落在坐标轴上时,求点 的坐标.(直接写出答案)
如图,已知 内接于 ,点 在劣弧 上(不与点 , 重合),点 为弦 的中点, , 与 的延长线交于点 ,射线 与射线 交于点 ,与 交于点 ,设 , , ,
(1)点点同学通过画图和测量得到以下近似数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
猜想: 关于 的函数表达式, 关于 的函数表达式,并给出证明;
(2)若 , , 的面积为 的面积的4倍,求 半径的长.
如图1,在直角坐标系 中,直线 交 轴, 轴于点 , ,点 的坐标是 ,过点 分别作 轴、 轴的垂线,垂足为 、 ,点 是线段 上的动点,以 为对称轴,作与 成轴对称的△ .
(1)当 时,求点 的坐标.
(2)当图1中的直线 经过点 ,且 时(如图 ,求点 由 到 的运动过程中,线段 扫过的图形与 重叠部分的面积.
(3)当图1中的直线 经过点 , 时(如图 ,以 为对称轴,作与 成轴对称的△ ,连接 , ,问是否存在点 ,使得△ 与△ 相似?若存在,求出 、 的值;若不存在,请说明理由.