初中数学

如图, AC BAE 的平分线,点 D 是线段 AC 上的一点, C = E AB = AD .求证: BC = DE

来源:2020年云南省昆明市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图所示, AB O 的直径, AD BC 分别切 O A B 两点, CD O 有公共点 E ,且 AD = DE

(1)求证: CD O 的切线;

(2)若 AB = 12 BC = 4 ,求 AD 的长.

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, D BC 边上的一点, AD = AC ,以线段 AD 为边作 ΔADE ,使得 AE = AB BAE = CAD .求证: DE = CB

来源:2020年西藏中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

综合与实践

问题情境:

如图①,点 E 为正方形 ABCD 内一点, AEB = 90 ° ,将 Rt Δ ABE 绕点 B 按顺时针方向旋转 90 ° ,得到 ΔCBE ' (点 A 的对应点为点 C ) .延长 AE CE ' 于点 F ,连接 DE

猜想证明:

(1)试判断四边形 B E ' FE 的形状,并说明理由;

(2)如图②,若 DA = DE ,请猜想线段 CF F E ' 的数量关系并加以证明;

解决问题:

(3)如图①,若 AB = 15 CF = 3 ,请直接写出 DE 的长.

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

阅读与思考

如图是小宇同学的数学日记,请仔细阅读,并完成相应的任务.

× × × 日星期日

没有直角尺也能作出直角

今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线 AB ,现根据木板的情况,要过 AB 上的一点 C ,作出 AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?

办法一:如图①,可利用一把有刻度的直尺在 AB 上量出 CD = 30 cm ,然后分别以 D C 为圆心,以 50 cm 40 cm 为半径画圆弧,两弧相交于点 E ,作直线 CE ,则 DCE 必为 90 °

办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出 M N 两点,然后把木棒斜放在木板上,使点 M 与点 C 重合,用铅笔在木板上将点 N 对应的位置标记为点 Q ,保持点 N 不动,将木棒绕点 N 旋转,使点 M 落在 AB 上,在木板上将点 M 对应的位置标记为点 R .然后将 RQ 延长,在延长线上截取线段 QS = MN ,得到点 S ,作直线 SC ,则 RCS = 90 °

我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢?

任务:

(1)填空:“办法一”依据的一个数学定理是     

(2)根据“办法二”的操作过程,证明 RCS = 90 °

(3)①尺规作图:请在图③的木板上,过点 C 作出 AB 的垂线(在木板上保留作图痕迹,不写作法);

②说明你的作法所依据的数学定理或基本事实(写出一个即可).

来源:2020年山西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高 MN .他俩在小明家的窗台 B 处,测得商业大厦顶部 N 的仰角 1 的度数,由于楼下植物的遮挡,不能在 B 处测得商业大厦底部 M 的俯角的度数.于是,他俩上楼来到小华家,在窗台 C 处测得大厦底部 M 的俯角 2 的度数,竟然发现 1 2 恰好相等.已知 A B C 三点共线, CA AM NM AM AB = 31 m BC = 18 m ,试求商业大厦的高 MN

来源:2020年陕西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

ΔABC 中, AB = AC CG BA BA 的延长线于点 G

特例感知:

(1)将一等腰直角三角尺按图1所示的位置摆放,该三角尺的直角顶点为 F ,一条直角边与 AC 重合,另一条直角边恰好经过点 B .通过观察、测量 BF CG 的长度,得到 BF = CG .请给予证明.

猜想论证:

(2)当三角尺沿 AC 方向移动到图2所示的位置时,一条直角边仍与 AC 边重合,另一条直角边交 BC 于点 D ,过点 D DE BA 垂足为 E .此时请你通过观察、测量 DE DF CG 的长度,猜想并写出 DE DF CG 之间存在的数量关系,并证明你的猜想.

联系拓展:

(3)当三角尺在图2的基础上沿 AC 方向继续移动到图3所示的位置(点 F 在线段 AC 上,且点 F 与点 C 不重合)时,请你判断(2)中的猜想是否仍然成立?(不用证明)

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 Rt Δ ABC 中, C = 90 °

(1)尺规作图:作 Rt Δ ABC 的外接圆 O ;作 ACB 的角平分线交 O 于点 D ,连接 AD .(不写作法,保留作图痕迹)

(2)若 AC = 6 BC = 8 ,求 AD 的长.

来源:2020年青海省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ABCD 中,点 E AD 的中点,连接 CE 并延长,交 BA 的延长线于点 F .求证: FA = AB

来源:2020年宁夏中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

已知 MPN 的两边分别与 O 相切于点 A B O 的半径为 r

(1)如图1,点 C 在点 A B 之间的优弧上, MPN = 80 ° ,求 ACB 的度数;

(2)如图2,点 C 在圆上运动,当 PC 最大时,要使四边形 APBC 为菱形, APB 的度数应为多少?请说明理由;

(3)若 PC O 于点 D ,求第(2)问中对应的阴影部分的周长(用含 r 的式子表示).

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, Rt Δ ABC 中, ACB = 90 ° ,顶点 A B 都在反比例函数 y = k x ( x > 0 ) 的图象上,直线 AC x 轴,垂足为 D ,连结 OA OC ,并延长 OC AB 于点 E ,当 AB = 2 OA 时,点 E 恰为 AB 的中点,若 AOD = 45 ° OA = 2 2

(1)求反比例函数的解析式;

(2)求 EOD 的度数.

来源:2020年江西省中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图, ΔABC 中, AB = AC ,点 E F 在边 BC 上, BE = CF ,点 D AF 的延长线上, AD = AC

(1)求证: ΔABE ΔACF

(2)若 BAE = 30 ° ,则 ADC =     °

来源:2018年江苏省镇江市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

问题呈现

如图1,在边长为1的正方形网格中,连接格点 D N E C DN EC 相交于点 P ,求 tan CPN 的值.

方法归纳

求一个锐角的三角函数值,我们往往需要找出(或构造出)一个直角三角形.观察发现问题中 CPN 不在直角三角形中,我们常常利用网格画平行线等方法解决此类问题,比如连接格点 M N ,可得 MN / / EC ,则 DNM = CPN ,连接 DM ,那么 CPN 就变换到 Rt Δ DMN 中.

问题解决

(1)直接写出图1中 tan CPN 的值为 2 

(2)如图2,在边长为1的正方形网格中, AN CM 相交于点 P ,求 cos CPN 的值;

思维拓展

(3)如图3, AB BC AB = 4 BC ,点 M AB 上,且 AM = BC ,延长 CB N ,使 BN = 2 BC ,连接 AN CM 的延长线于点 P ,用上述方法构造网格求 CPN 的度数.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在 ΔABC 中, AB = AC AO BC 于点 O OE AB 于点 E ,以点 O 为圆心, OE 为半径作半圆,交 AO 于点 F

(1)求证: AC O 的切线;

(2)若点 F OA 的中点, OE = 3 ,求图中阴影部分的面积;

(3)在(2)的条件下,点 P BC 边上的动点,当 PE + PF 取最小值时,直接写出 BP 的长.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

如图,在平行四边形 ABCD 中, DB = DA ,点 F AB 的中点,连接 DF 并延长,交 CB 的延长线于点 E ,连接 AE

(1)求证:四边形 AEBD 是菱形;

(2)若 DC = 10 tan DCB = 3 ,求菱形 AEBD 的面积.

来源:2018年江苏省扬州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

初中数学三角形解答题