如图,在中,是边上的中线,是边上一点,过点作交的延长线于点.
(1)求证:.
(2)当,,时,求的长.
三个形状大小相同的菱形按如图所示方式摆放,已知,菱形的较短对角线长为.若点落在的延长线上,则的周长为 .
我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于,可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形的各条边都相等.
①如图1,若,求证:五边形是正五边形;
②如图2,若,请判断五边形是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”
如图3,已知凸六边形的各条边都相等.
①若,则六边形是正六边形;
②若,则六边形是正六边形.
如图,有两张矩形纸片 和 , , .把纸片 交叉叠放在纸片 上,使重叠部分为平行四边形,且点 与点 重合.当两张纸片交叉所成的角 最小时, 等于
A. |
|
B. |
|
C. |
|
D. |
|
如图,等边三角形 的边长为8,以 上一点 为圆心的圆分别与边 , 相切,则 的半径为
A. |
|
B. |
3 |
C. |
4 |
D. |
|
下列长度的三条线段,能组成三角形的是
A. |
3,4,8 |
B. |
5,6,10 |
C. |
5,5,11 |
D. |
5,6,11 |
如图1是实验室中的一种摆动装置,在地面上,支架是底边为的等腰直角三角形,摆动臂可绕点旋转,摆动臂可绕点旋转,,.
(1)在旋转过程中,
①当,,三点在同一直线上时,求的长.
②当,,三点为同一直角三角形的顶点时,求的长.
(2)若摆动臂顺时针旋转,点的位置由外的点转到其内的点处,连结,如图2,此时,,求的长.
有一块形状如图的五边形余料,,,,,,要在这块余料中截取一块矩形材料,其中一条边在上,并使所截矩形材料的面积尽可能大.
(1)若所截矩形材料的一条边是或,求矩形材料的面积.
(2)能否截出比(1)中更大面积的矩形材料?如果能,求出这些矩形材料面积的最大值;如果不能,说明理由.
如图,在直线上方有一个正方形,,以点为圆心,长为半径作弧,与交于点,,分别以点,为圆心,长为半径作弧,两弧交于点,连结,则的度数为 .
如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为
A. |
|
B. |
|
C. |
|
D. |
|
正方形 的边 上有一动点 ,以 为边作矩形 ,且边 过点 .在点 从点 移动到点 的过程中,矩形 的面积
A. |
先变大后变小 |
B. |
先变小后变大 |
C. |
一直变大 |
D. |
保持不变 |
如图,墙上钉着三根木条 , , ,量得 , ,那么木条 , 所在直线所夹的锐角是
A. |
|
B. |
|
C. |
|
D. |
|