如图,已知二次函数 的图象经过 、 、 三点.
(1)求该二次函数的解析式;
(2)点 是该二次函数图象上的一点,且满足 是坐标原点),求点 的坐标;
(3)点 是该二次函数图象上位于第一象限上的一动点,连接 分别交 、 轴于点 、 ,若 、 的面积分别为 、 ,求 的最大值.
如图,抛物线 经过 的三个顶点,其中点 ,点 , 为坐标原点.
(1)求这条抛物线所对应的函数表达式;
(2)若 , 为该抛物线上的两点,且 ,求 的取值范围;
(3)若 为线段 上的一个动点,当点 ,点 到直线 的距离之和最大时,求 的大小及点 的坐标.
如图1,已知二次函数 的图象与 轴交于点 ,与 轴交于点 、 ,点 坐标为 ,连接 、 .
(1)请直接写出二次函数 的表达式;
(2)判断 的形状,并说明理由;
(3)若点 在 轴上运动,当以点 、 、 为顶点的三角形是等腰三角形时,请写出此时点 的坐标;
(4)如图2,若点 在线段 上运动(不与点 、 重合),过点 作 ,交 于点 ,当 面积最大时,求此时点 的坐标.
如图1,抛物线 与 轴交于 , 两点,过点 的直线 分别与 轴及抛物线交于点 , .
(1)求直线和抛物线的表达式;
(2)动点 从点 出发,在 轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为 秒,当 为何值时, 为直角三角形?请直接写出所有满足条件的 的值;
(3)如图2,将直线 沿 轴向下平移4个单位后,与 轴, 轴分别交于 , 两点,在抛物线的对称轴上是否存在点 ,在直线 上是否存在点 ,使 的值最小?若存在,求出其最小值及点 , 的坐标;若不存在,请说明理由.
如图1,抛物线 与 轴交于点 和点 ,与 轴交于点 ,抛物线 的顶点为 , 轴于点 .将抛物线 平移后得到顶点为 且对称轴为直线 的抛物线 .
(1)求抛物线 的解析式;
(2)如图2,在直线 上是否存在点 ,使 是等腰三角形?若存在,请求出所有点 的坐标;若不存在,请说明理由;
(3)点 为抛物线 上一动点,过点 作 轴的平行线交抛物线 于点 ,点 关于直线 的对称点为 ,若以 , , 为顶点的三角形与 全等,求直线 的解析式.
如图,抛物线 与 轴交于点 , ,与 轴交于点 ,线段 的中垂线与对称轴 交于点 ,与 轴交于点 ,与 交于点 ,对称轴 与 轴交于点 .
(1)求抛物线的函数表达式;
(2)求点 的坐标;
(3)点 为 轴上一点, 与直线 相切于点 ,与直线 相切于点 .求点 的坐标;
(4)点 为 轴上方抛物线上的点,在对称轴 上是否存在一点 ,使得以点 , , , 为顶点的四边形是平行四边形?若存在,则直接写出 点坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,抛物线 与 轴交于 、 两点,与 轴交于点 ,且 , , .
(1)求抛物线的解析式;
(2)点 从 点出发,在线段 上以每秒3个单位长度的速度向 点运动,同时,点 从 出发,在线段 上以每秒1个单位长度的速度向 点运动,当其中一个点到达终点时,另一个点也停止运动,当 存在时,求运动多少秒使 的面积最大,最大面积是多少?
(3)在(2)的条件下, 面积最大时,在 上方的抛物线上是否存在点 ,使 的面积是 面积的9倍?若存在,求点 的坐标;若不存在,请说明理由.
如图1,抛物线 与 相交于点 、 , 与 分别交 轴于点 、 ,且 为线段 的中点.
(1)求 的值;
(2)若 ,求 的面积;
(3)抛物线 的对称轴为 ,顶点为 ,在(2)的条件下:
①点 为抛物线 对称轴 上一动点,当 的周长最小时,求点 的坐标;
②如图2,点 在抛物线 上点 与点 之间运动,四边形 的面积是否存在最大值?若存在,求出面积的最大值和点 的坐标;若不存在,请说明理由.
在平面直角坐标系中,抛物线 与 轴交于点 、 ,交 轴于点 ,点 为抛物线的顶点,对称轴与 轴交于点 .
(1)求抛物线的解析式;
(2)如图1,连接 ,点 是线段 上方抛物线上一动点, 于点 ,过点 作 轴于点 ,交 于点 .点 是 轴上一动点,当 取最大值时:
①求 的最小值;
②如图2, 点为 轴上一动点,请直接写出 的最小值.
如图,已知二次函数的图象顶点在原点,且点 在二次函数的图象上,过点 作 轴的平行线交二次函数的图象于 、 两点.
(1)求二次函数的表达式;
(2) 为平面内一点,当 是等边三角形时,求点 的坐标;
(3)在二次函数的图象上是否存在一点 ,使得以点 为圆心的圆过点 和点 ,且与直线 相切.若存在,求出点 的坐标,并求 的半径;若不存在,说明理由.
已知二次函数 的图象与 轴的交于 、 两点,与 轴交于点 ,
(1)求二次函数的表达式及 点坐标;
(2) 是二次函数图象上位于第三象限内的点,求点 到直线 的距离取得最大值时点 的坐标;
(3) 是二次函数图象对称轴上的点,在二次函数图象上是否存在点 ,使以 、 、 、 为顶点的四边形是平行四边形?若有,请写出点 的坐标(不写求解过程).
在平面直角坐标系中,我们定义直线 为抛物线 、 、 为常数, 的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在 轴上的三角形为其“梦想三角形”.
已知抛物线 与其“梦想直线”交于 、 两点(点 在点 的左侧),与 轴负半轴交于点 .
(1)填空:该抛物线的“梦想直线”的解析式为 ,点 的坐标为 ,点 的坐标为 ;
(2)如图,点 为线段 上一动点,将 以 所在直线为对称轴翻折,点 的对称点为 ,若 为该抛物线的“梦想三角形”,求点 的坐标;
(3)当点 在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点 ,使得以点 、 、 、 为顶点的四边形为平行四边形?若存在,请直接写出点 、 的坐标;若不存在,请说明理由.
如图,抛物线 的图象经过 , , 三点.
(1)求抛物线的解析式.
(2)抛物线的顶点 与对称轴 上的点 关于 轴对称,直线 交抛物线于点 ,直线 交 于点 ,若直线 将 的面积分为 两部分,求点 的坐标.
(3) 为抛物线上的一动点, 为对称轴上动点,抛物线上是否存在一点 ,使 、 、 、 为顶点的四边形为平行四边形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,抛物线 经过 、 、 三点,点 为抛物线上第一象限内的一个动点.
(1)求抛物线所对应的函数表达式;
(2)当 的面积为3时,求点 的坐标;
(3)过点 作 ,垂足为点 ,是否存在点 ,使得 中的某个角等于 的2倍?若存在,求点 的横坐标;若不存在,请说明理由.
出关于 的一元二次方程,解之取其非零值可得出点 的横坐标.依此即可得解.