已知二次函数 y = a x 2 + 2 x + c ( a ≠ 0 ) 的图象与 x 轴的交于 A 、 B ( 1 , 0 ) 两点,与 y 轴交于点 C ( 0 , - 3 ) ,
(1)求二次函数的表达式及 A 点坐标;
(2) D 是二次函数图象上位于第三象限内的点,求点 D 到直线 AC 的距离取得最大值时点 D 的坐标;
(3) M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点 N ,使以 M 、 N 、 B 、 O 为顶点的四边形是平行四边形?若有,请写出点 N 的坐标(不写求解过程).
解不等式组,并用数轴表示其解集。
如图,已知抛物线(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C. (1)点B的坐标为,点C的坐标为(用含b的代数式表示); (2)若b=8,请你在抛物线上找点P,使得△PAC是直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由; (3)请你探索,在(1)的结论下,在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)如果存在,求出点Q的坐标;如果不存在,请说明理由.
一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系; (1)根据图中信息,说明图中点(2,0)的实际意义; (2)求图中线段AB所在直线的函数解析式和甲乙两地之间的距离; (3)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;
如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是的中点,过点D作直线BC的垂线,分别交CB、CA的延长线E、F (1)求证:EF是⊙O的切线; (2)若EF=12,EC=9,求⊙O的半径.
已知,如图:点A(,1)在反比例函数图象上,将y轴绕点O顺时针旋转30°,与反比例函数在第一象限内交于点B, 求:(1)反比例函数的解析式; (2)求点B的坐标及△AOB的面积.