如图,在平面直角坐标系中,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) 与 x 轴交于 A 、 B 两点,与 y 轴交于点 C ,且 OA = 2 , OB = 8 , OC = 6 .
(1)求抛物线的解析式;
(2)点 M 从 A 点出发,在线段 AB 上以每秒3个单位长度的速度向 B 点运动,同时,点 N 从 B 出发,在线段 BC 上以每秒1个单位长度的速度向 C 点运动,当其中一个点到达终点时,另一个点也停止运动,当 ΔMBN 存在时,求运动多少秒使 ΔMBN 的面积最大,最大面积是多少?
(3)在(2)的条件下, ΔMBN 面积最大时,在 BC 上方的抛物线上是否存在点 P ,使 ΔBPC 的面积是 ΔMBN 面积的9倍?若存在,求点 P 的坐标;若不存在,请说明理由.
市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表(单位:环):
(1)根据表中的数据,分别计算甲、乙两人的平均成绩:= ,= (2)分别计算甲、乙六次测试成绩的方差;S2甲= S2乙= (3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.
如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.
关于x的一元二次方程有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.
解方程:(1);(2).
计算:(1);(2)