如图1,抛物线 交 轴于点 和点 .
(1)求该抛物线所对应的函数解析式;
(2)如图2,该抛物线与 轴交于点 ,顶点为 ,点 在该抛物线上.
①求四边形 的面积;
②点 是线段 上的动点(点 不与点 、 重合),过点 作 轴交该抛物线于点 ,连接 、 ,当 是直角三角形时,求出所有满足条件的点 的坐标.
抛物线 经过点 和点 .
(1)求该抛物线所对应的函数解析式;
(2)该抛物线与直线 相交于 、 两点,点 是抛物线上的动点且位于 轴下方,直线 轴,分别与 轴和直线 交于点 、 .
①连接 、 ,如图1,在点 运动过程中, 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
②连接 ,过点 作 ,垂足为点 ,如图2,是否存在点 ,使得 与 相似?若存在,求出满足条件的点 的坐标;若不存在,说明理由.
如图1,抛物线 与 轴交于点 、 ,与 轴交于点 ,点 是抛物线上的动点,连接 、 , 与 轴交于点 .
(1)求该抛物线所对应的函数解析式;
(2)若点 的坐标为 ,请求出此时 的面积;
(3)过点 作 轴的平行线交 轴于点 ,交直线 于点 ,如图2.
①若 ,求证: ;
② 能否为等腰三角形?若能,请求出此时点 的坐标;若不能,请说明理由.
如图,在平面直角坐标系中,抛物线 交 轴于 , 两点,交 轴于点 , .
(1)求抛物线的解析式;
(2)点 是线段 上任意一点,过 作直线 轴于点 ,交抛物线于点 ,求线段 的最大值;
(3)点 是抛物线上任意一点,连接 ,以 为边作正方形 ,是否存在点 使点 恰好落在对称轴上?若存在,请求出点 的坐标;若不存在,请说明理由.
如图1,对称轴为直线 的抛物线经过 、 两点,抛物线与 轴的另一交点为
(1)求抛物线的解析式;
(2)若点 为第一象限内抛物线上的一点,设四边形 的面积为 ,求 的最大值;
(3)如图2,若 是线段 上一动点,在 轴是否存在这样的点 ,使 为等腰三角形且 为直角三角形?若存在,求出点 的坐标;若不存在,请说明理由.
已知,点 是二次函数 图象上的一点,点 的坐标为 ,直角坐标系中的坐标原点 与点 , 在同一个圆上,圆心 的纵坐标为 .
(1)求 的值;
(2)当 , , 三点在同一条直线上时,求点 和点 的坐标;
(3)当点 在第一象限时,过点 作 轴,垂足为点 ,求证: .
如图,已知抛物线 的对称轴为直线 ,且抛物线经过 , 两点,与 轴交于点 .
(1)若直线 经过 、 两点,求直线 和抛物线的解析式;
(2)在抛物线的对称轴 上找一点 ,使点 到点 的距离与到点 的距离之和最小,求出点 的坐标;
(3)设点 为抛物线的对称轴 上的一个动点,求使 为直角三角形的点 的坐标.
如图1,已知平行四边形 顶点 的坐标为 ,点 在 轴上,且 轴,过 , , 三点的抛物线 的顶点坐标为 ,点 是线段 上一动点,直线 交 于点 .
(1)求抛物线的表达式;
(2)设四边形 的面积为 ,请求出 与 的函数关系式,并写出自变量 的取值范围;
(3)如图2,过点 作 轴,垂足为 ,交直线 于 ,过点 作 轴,垂足为 ,连接 ,直线 分别交 轴, 轴于点 , ,试求线段 的最小值,并直接写出此时 的值.
如图,已知抛物线 经过 的三个顶点,其中点 ,点 , 轴,点 是直线 下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点 且与 轴平行的直线 与直线 、 分别交于点 、 ,当四边形 的面积最大时,求点 的坐标;
(3)当点 为抛物线的顶点时,在直线 上是否存在点 ,使得以 、 、 为顶点的三角形与 相似,若存在,求出点 的坐标,若不存在,请说明理由.
如图,抛物线 的图象经过点 ,点 ,点 ,与 轴交于点 ,作直线 ,连接 , .
(1)求抛物线的函数表达式;
(2) 是抛物线上的点,求满足 的点 的坐标;
(3)点 在 轴上且位于点 上方,点 在直线 上,点 为第一象限内抛物线上一点,若以点 , , , 为顶点的四边形是菱形,求菱形的边长.
如图,在平面直角坐标系中,抛物线 的顶点坐标为 ,与 轴交于点 ,与 轴交于点 、 .
(1)求二次函数 的表达式;
(2)过点 作 平行于 轴,交抛物线于点 ,点 为抛物线上的一点(点 在 上方),作 平行于 轴交 于点 ,问当点 在何位置时,四边形 的面积最大?并求出最大面积;
(3)若点 在抛物线上,点 在其对称轴上,使得以 、 、 、 为顶点的四边形是平行四边形,且 为其一边,求点 、 的坐标.
如图1,抛物线 与 轴交于点 和 (点 在点 的左侧),与 轴交于点 ,连接 .
(1)求 、 的值;
(2)如图2,点 为抛物线上的一动点,且位于直线 上方,连接 、 .求 面积的最大值;
(3)如图3,点 、 分别为线段 和线段 上的动点,连接 、 ,是否存在这样的点 ,使 为等腰三角形, 为直角三角形同时成立?若存在,求出点 的坐标;若不存在,请说明理由.
如图,在平面直角坐标系中,直线 与 轴, 轴相交于 , 两点,点 的坐标是 ,连接 , .
(1)求过 , , 三点的抛物线的解析式,并判断 的形状;
(2)动点 从点 出发,沿 以每秒2个单位长度的速度向点 运动;同时,动点 从点 出发,沿 以每秒1个单位长度的速度向点 运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为 秒,当 为何值时, ?
(3)在抛物线的对称轴上,是否存在点 ,使以 , , 为顶点的三角形是等腰三角形?若存在,求出点 的坐标;若不存在,请说明理由.
如图,已知抛物线 经过点 , 和 . 垂直于 轴,交抛物线于点 , 垂直与 轴,垂足为 , 是抛物线的对称轴,点 是抛物线的顶点.
(1)求出二次函数的表达式以及点 的坐标;
(2)若 沿 轴向右平移到其直角边 与对称轴 重合,再沿对称轴 向上平移到点 与点 重合,得到 △ ,求此时 △ 与矩形 重叠部分的图形的面积;
(3)若 沿 轴向右平移 个单位长度 得到 △ , △ 与 重叠部分的图形面积记为 ,求 与 之间的函数表达式,并写出自变量 的取值范围.