如图,抛物线 y = a x 2 + bx + c 的图象经过点 A ( - 2 , 0 ) ,点 B ( 4 , 0 ) ,点 D ( 2 , 4 ) ,与 y 轴交于点 C ,作直线 BC ,连接 AC , CD .
(1)求抛物线的函数表达式;
(2) E 是抛物线上的点,求满足 ∠ ECD = ∠ ACO 的点 E 的坐标;
(3)点 M 在 y 轴上且位于点 C 上方,点 N 在直线 BC 上,点 P 为第一象限内抛物线上一点,若以点 C , M , N , P 为顶点的四边形是菱形,求菱形的边长.
如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米. 现以O点为原点,OM所在直线为x轴建立直角坐标系.直接写出点M及抛物线顶点P的坐标;求这条抛物线的解析式;若要搭建一个矩形“支撑架”AD- DC- CB,使C、D点在抛物线上,A、B点在地面OM上,
计算
计算化简:
求下列各式的值:+ +
解不等式组